Buscar
Mostrando ítems 1-10 de 50
Symplectic structures and dynamical symmetry groupsSymplectic structures and dynamical symmetry groups
(Revista Mexicana de Física, 2009)
Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
(2017)
We describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n≥1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology ...
Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
(2017)
We describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n≥1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology ...
On the symplectic two-form of gravity in terms of Dirac eigenvalues
(Elsevier B.V., 2002-11-14)
The Dirac eigenvalues form a subset of observables of the Euclidean gravity. The symplectic two-form in the covariant phase space could be expressed, in principle, in terms of the Dirac eigenvalues. We discuss the existence ...
On the symplectic two-form of gravity in terms of Dirac eigenvalues
(Elsevier B.V., 2002-11-14)
The Dirac eigenvalues form a subset of observables of the Euclidean gravity. The symplectic two-form in the covariant phase space could be expressed, in principle, in terms of the Dirac eigenvalues. We discuss the existence ...
On the symplectic two-form of gravity in terms of Dirac eigenvalues
(Elsevier B.V., 2014)
Non-commutative geometry and symplectic field theory
(2007)
In this work we study representations of the Poincaré group defined over symplectic manifolds, deriving the Klein–Gordon and the Dirac equation in phase space. The formalism is associated with relativistic Wigner functions; ...
Cohomological field theory in the BV formalism
(Universidade Estadual Paulista (Unesp), 2020-08-07)
O formalismo de Batalin e Vilkovisky (BV) é um dos principais ingredientes de muitas das abordagens que temos para formulações matematicamente precisas de teoria quântica de campos (QFT) perturbativa. Vamos expor este ...
Obtenção de teorias de calibre não abelianas via formalismo simplético de Faddeev-Jackiw
(Universidade Federal de Juiz de Fora (UFJF)BrasilICE – Instituto de Ciências ExatasPrograma de Pós-graduação em FísicaUFJF, 2019)
A dualidade Maxwell-Proca-Chern-Simons via Formalismo Simplético de Imersão
(Universidade Federal de Juiz de Fora (UFJF)BrasilICE – Instituto de Ciências ExatasPrograma de Pós-graduação em FísicaUFJF, 2017)