Buscar
Mostrando ítems 1-5 de 5
Permanence properties of the second nilpotent product of groups
(Belgian Mathematical Soc Triomphe, 2019-07)
We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of ...
Spectral theory in a twisted groupoid setting: Spectral decompositions, localization and Fredholmness
(Universidad de Münster, 2020)
We study bounded operators defined in terms of the regular representations of the C*-algebra of an amenable, Hausdorff, second countable, locally compact groupoid endowed with a continuous 2-cocycle. We concentrate on ...
Matrices y sistemas lineales Matrices. Suma y producto de matrices. Tipos de matrices. Operaciones elementales sobre filas y columnas. Matriz reducida. Rango de una matriz. Inversas de matrices cuadradas. Determinante de matrices cuadradas. Transformaciones lineales y matrices. Sistema de ecuaciones lineales. Solución de sistema lineales.
(Universidad Nacional de Educación Enrique Guzmán y VallePE, 2018-06-13)
El objetivo de este trabajo de investigación es dar a conocer que se denomina matriz a un arreglo rectangular de números reales ordenados en filas o columnas encerrados entre paréntesis o corchetes. Los elementos de la ...
Zariski cancellation problem for skew PBW extensions
(Bogotá - Ciencias - Doctorado en Ciencias - MatemáticasDepartamento de MatemáticasUniversidad Nacional de Colombia - Sede Bogotá, 2020-06-19)
A special question for noncommutative algebras is Zariski cancellation problem. In this thesis we establish cancellation for some special classes of algebras such as skew PBW extensions, some Artin--Schelter regular algebras ...
Non-commutative differential calculus of some algebras of polynomial type having PBW bases
(Bogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasUniversidad Nacional de Colombia - Sede Bogotá, 2020-06-12)
In this work, we study the notion of differential calculus associated to an associative algebra, from its origin in manifolds geometry, to some generalizations in non commutative differential geometry. In particular, we ...