Buscar
Mostrando ítems 1-8 de 8
Landau and Kolmogoroff type polynomial inequalities II
(2004-06-01)
Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any ...
Landau and Kolmogoroff type polynomial inequalities II
(2004-06-01)
Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any ...
Majorization Bounds for Ritz Values of Self-Adjoint Matrices
(Society for Industrial and Applied Mathematics, 2020-04)
A priori, a posteriori, and mixed type upper bounds for the absolute change in Ritz values of self-adjoint matrices in terms of submajorization relations are obtained. Some of our results prove recent conjectures by Knyazev, ...
Landau and Kolmogoroff type polynomial inequalities
(Gordon Breach Sci Publ Ltd, 2014)
Landau and Kolmogoroff type polynomial inequalities
(Gordon Breach Sci Publ Ltd, 1999-01-01)
Let 0<j<m less than or equal to n be integers. Denote by parallel to . parallel to the norm parallel to f parallel to(2) = integral(-infinity)(infinity) f(2)(x) exp(-x(2)) dx. For various positive values of A and B we ...
Métodos de Rayleigh-Ritz y Galerkin para resolver el problema de Sturm-Liouville con malla uniforme y no uniforme
(Universidad Nacional de Ingeniería, 2017)
Métodos de Rayleigh-Ritz y Galerkin para resolver el problema de Sturm-Liouville con malla uniforme y no uniforme
(Universidad Nacional de Ingeniería, 2017)