Otro
Landau and Kolmogoroff type polynomial inequalities II
Registro en:
Archives of Inequalities and Applications, v. 2, n. 2-3, p. 339-353, 2004.
1542-6149
2-s2.0-11044237331
Autor
De Andrade, Eliana X.L.
Dimitrov, Dimitar K.
De Sousa, Lisandra E.
Resumen
Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities ∥f′∥ 2 ≤ A∥f″∥2 + B∥f∥ 2 hold. © Dynamic Publishers, Inc.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
ZEROS OF CLASSICAL ORTHOGONAL POLYNOMIALS OF A DISCRETE VARIABLE
Area, I; Dimitrov, DK; Godoy, E; Paschoa, VG -
Zeros of classical orthogonal polynomials of a discrete variable
Area, Ivan; Dimitrov, Dimitar K.; Godoy, Eduardo; Paschoa, Vanessa G. -
Zeros of classical orthogonal polynomials of a discrete variable
Univ Vigo; Universidade Estadual Paulista (Unesp); Universidade Estadual de Campinas (UNICAMP) (Amer Mathematical Soc, 2013-04-01)In this paper we obtain sharp bounds for the zeros of classical orthogonal polynomials of a discrete variable, considered as functions of a parameter, by using a theorem of A. Markov and the so-called Hellmann-Feynman ...