Buscar
Mostrando ítems 1-10 de 56
Some remarks about Poincaré duality pairs
(2012-07-01)
Bieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality ...
Some remarks about Poincaré duality pairs
(2012-07-01)
Bieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality ...
On Poincare duality for pairs (G,W)
(De Gruyter Open Ltd, 2015-05-28)
Let G be a group and W a G-set. In this work we prove a result that describes geometrically, for a Poincare duality pair (G, W), the set of representatives for the G-orbits in W and the family of isotropy subgroups. We ...
Dualidade de Poincaré e invariantes cohomológicos
(Universidade Estadual Paulista (Unesp), 2008-03-31)
Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. ...
Dualidade de Poincaré e invariantes cohomológicos
(Universidade Estadual Paulista (Unesp), 2008-03-31)
Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. ...
Poincaré duality in equivariant intersection theoryPoincaré duality in equivariant intersection theory
(Pontificia Universidad Católica del PerúPE, 2017)
On certain homological invariant and its relation with poincaré duality pairs
(2018-01-01)
Let G be a group, S = {Si, i ∈ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a ℤ2 G-module. In [4] the authors defined a homological invariant E∗ (G, S, M), which is “dual” to ...
On certain homological invariant and its relation with Poincare duality pairs
(Luhansk Taras Shevchenko Natl Univ, 2018-01-01)
Let G be a group, S = {S-i, i is an element of I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z(2)G-module. In [4] the authors defined a homological invariant E,(G,S,M), which ...
Dualidade de Poincaré e invariantes cohomológicos
(Universidade Estadual Paulista (UNESP), 2014)