dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Trott, Michael | |
dc.date | 2016-10-26T18:08:36Z | |
dc.date | 2016-10-26T18:08:36Z | |
dc.date.accessioned | 2017-04-06T13:05:36Z | |
dc.date.available | 2017-04-06T13:05:36Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/370917 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/22922 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/967199 | |
dc.description | Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.description | The points {z,w} belong to C² of the complex unit circle z² + w² =1 can be parametrized:
z = x + iy = cos(α)cosh(β) - isin(α)sinh(β),
w = u + iv = sin(α)cosh(β) + icos(α)sinh(β).
This Demonstration shows 3D projections of the surface z² + w² = 1 in x, y, u, v space. The angles φ_(a,b) denote the rotation angles inside the a, b hyperplane. In the limit, as β -> 0, the complex unit circle becomes a circle in the x, u plane | |
dc.publisher | Wolfram demonstrations project | |
dc.relation | TheComplexUnitCircle.nbp | |
dc.rights | Demonstration freeware using MathematicaPlayer | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa | |
dc.subject | Geometria | |
dc.title | The complex unit circle | |
dc.type | Otro | |