dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorTrott, Michael
dc.date2016-10-26T18:08:36Z
dc.date2016-10-26T18:08:36Z
dc.date.accessioned2017-04-06T13:05:36Z
dc.date.available2017-04-06T13:05:36Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/370917
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22922
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/967199
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.descriptionThe points {z,w} belong to C² of the complex unit circle z² + w² =1 can be parametrized: z = x + iy = cos(α)cosh(β) - isin(α)sinh(β), w = u + iv = sin(α)cosh(β) + icos(α)sinh(β). This Demonstration shows 3D projections of the surface z² + w² = 1 in x, y, u, v space. The angles φ_(a,b) denote the rotation angles inside the a, b hyperplane. In the limit, as β -> 0, the complex unit circle becomes a circle in the x, u plane
dc.publisherWolfram demonstrations project
dc.relationTheComplexUnitCircle.nbp
dc.rightsDemonstration freeware using MathematicaPlayer
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
dc.subjectGeometria
dc.titleThe complex unit circle
dc.typeOtro


Este ítem pertenece a la siguiente institución