dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBeck, George
dc.date2016-10-26T18:05:56Z
dc.date2016-10-26T18:05:56Z
dc.date.accessioned2017-04-06T12:54:08Z
dc.date.available2017-04-06T12:54:08Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/369584
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/23099
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/965866
dc.descriptionThe function φ(n) (the Euler phi function of n, also known as the totient function) gives the number of positive integers relatively prime to n. For example, φ(10)=4 because 1, 3, 7, 9 are relatively prime to 10. The function σ(n) is the sum of the divisors of n. For example, σ(10)=18 because the divisors of 10 are 1, 2, 5, 10 and 1+2+5+10=18. The plot shows either the unsorted or sorted values of φ(n) or σ(n) for n from 1 to up to a maximum of 6000. You can drag the locator to see that the line through the bulk of the unsorted values corresponds to the mostly linear part of the sorted values on the left. For large values the plot of the sorted values has a visible change in curvature on the right
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstrations Project
dc.relationSortingTheValuesOfTwoNumberTheoreticFunctions.nbp
dc.rightsDemonstration freeware using MathematicaPlayer
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Teoria dos Números
dc.subjectMatemática experimental
dc.titleSorting the values of two number theoretic functions
dc.typeOtro


Este ítem pertenece a la siguiente institución