dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Kiehl, John | |
dc.date | 2016-10-26T18:04:20Z | |
dc.date | 2016-10-26T18:04:20Z | |
dc.date.accessioned | 2017-04-06T12:46:50Z | |
dc.date.available | 2017-04-06T12:46:50Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/368790 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/23622 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/965072 | |
dc.description | In the left diagram, line segment A is tangent to the inner circle of an annular ring. Using the "sweep" slider, you can sweep A through the entire area of the ring. Simultaneously, on the right, that same line segment, A—now with one end pegged to a single point—sweeps out the same area, but forms a circular disk. Surprisingly, a new proof of the Pythagorean theorem discovered by Mamikon Mnatsakanian in 1959 (first published in 1981) dramatically appears | |
dc.description | Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram demonstrations project | |
dc.relation | MamikonsProofOfThePythagoreanTheorem.nbp | |
dc.rights | Demonstrations freeware using MathematicaPlayer | |
dc.subject | Demonstrações de teoremas | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Geometria e Topologia | |
dc.title | Mamikon's proof of the pythagorean theorem | |
dc.type | Otro | |