dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLivshits, Michael
dc.date2016-10-26T17:59:31Z
dc.date2016-10-26T17:59:31Z
dc.date.accessioned2017-04-06T12:25:52Z
dc.date.available2017-04-06T12:25:52Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/366465
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22638
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/962747
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.descriptionThe complex roots of the equation z^n + bz + 1=0 are displayed as red dots. The blue dots correspond to the branching points, that is, to such values of b that the equation has a double root. The black dot corresponds to b, which you can drag to see the roots move. In particular, two roots dance around each other and interchange their positions every time b moves around a branching point. So, every time b runs in a loop without hitting any branching points, the roots are permuted. The group generated by such permutations is called the monodromy group of the equation. The parameter b and the branching points are displayed at a larger scale to keep them well separated from the roots. The green dot shows b=0
dc.publisherWolfram Demonstrations Project
dc.relationMonodromyOfZNBZ10.nbp
dc.rightsDemonstration freeware using MathematicaPlayer
dc.subjectComplex analysis
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
dc.titleMonodromy of z^n + b z + 1 = 0
dc.typeOtro


Este ítem pertenece a la siguiente institución