dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBoucher, Chris
dc.date2016-10-26T17:58:43Z
dc.date2016-10-26T17:58:43Z
dc.date.accessioned2017-04-06T12:22:21Z
dc.date.available2017-04-06T12:22:21Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/366073
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22600
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/962355
dc.descriptionA binomial random variable models the number of successes in n trials, where the trials are independent and the only options on each trial are success and failure. A generalization of this called a multinomial distribution can be obtained by allowing more than two possibilities on each trial. When there are three possibilities on each trial, call them "perfect", "acceptable", and "failing", the result is a trinomial random variable. Letting X be the number of perfects and Y the number of acceptables in n trials, the image is a rendering of the joint probability mass function of X and Y. The cuboid whose lower-left corner is at (x,y) has height equal to the probability of x perfects and y acceptables in n trials. Note that if p1 is the probability of a trial being perfect and p2 the probability of a trial being acceptable, then the probability of failure on the trial is 1-p1-p2
dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationTheTrinomialDistribution.nbp
dc.rightsDemonstration freeware using MathematicaPlayer
dc.subjectRandom processes
dc.subjectProbability
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise
dc.titleThe trinomial distribution
dc.typeOtro


Este ítem pertenece a la siguiente institución