dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Rosa, Félix | |
dc.creator | Martínez, Soledad | |
dc.date | 2016-10-26T17:52:18Z | |
dc.date | 2016-10-26T17:52:18Z | |
dc.date.accessioned | 2017-04-06T11:55:50Z | |
dc.date.available | 2017-04-06T11:55:50Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/363031 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/7330 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/959313 | |
dc.description | The Cauchy mean-value theorem states that if f and g are two functions continuous on [a,b] and differentiable on (a,b), then there exists a point c in (a,b) such that f´(c)(g(b)-g(a)) = g´(c)(f(b)-f(a))
Geometric interpretation: Consider the parametric curve X(t) = (f(t), g(t)), t in [a,b], X(a)≠X(b); then the line passing through X(a), X(b) is parallel to the tangent line passing through X(c) | |
dc.description | Continuous functions, differentiable functions, parametric curves, mean-value theorem | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram Demonstration Project | |
dc.relation | CauchyMeanValueTheorem.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Mean value theorem | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise | |
dc.subject | Derivative | |
dc.title | Cauchy mean-value theorem | |
dc.type | Otro | |