dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorSchreiber, Michael
dc.date2016-10-26T17:52:11Z
dc.date2016-10-26T17:52:11Z
dc.date.accessioned2017-04-06T11:55:20Z
dc.date.available2017-04-06T11:55:20Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/362967
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/7292
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/959249
dc.descriptionThe Fibonacci numbers are defined by the recurrence f(n)= f(n-1)+f(n-2). The sequence f(n)mod m is periodic for any moduli m. Fibonacci numbers have been generalized to real and complex numbers. The plots show the norm, argument, real and imaginary parts modulo real numbers. A further generalization is to take the Fibonacci numbers modulo a complex number
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationComplexFibonacciResidues.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectFibonacci
dc.subjectComplex numbers
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Geometria Algébrica
dc.titleComplex Fibonacci residues
dc.typeOtro


Este ítem pertenece a la siguiente institución