dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Schreiber, Michael | |
dc.date | 2016-10-26T17:52:11Z | |
dc.date | 2016-10-26T17:52:11Z | |
dc.date.accessioned | 2017-04-06T11:55:20Z | |
dc.date.available | 2017-04-06T11:55:20Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/362967 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/7292 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/959249 | |
dc.description | The Fibonacci numbers are defined by the recurrence f(n)= f(n-1)+f(n-2). The sequence f(n)mod m is periodic for any moduli m. Fibonacci numbers have been generalized to real and complex numbers. The plots show the norm, argument, real and imaginary parts modulo real numbers. A further generalization is to take the Fibonacci numbers modulo a complex number | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram Demonstration Project | |
dc.relation | ComplexFibonacciResidues.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Fibonacci | |
dc.subject | Complex numbers | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Geometria Algébrica | |
dc.title | Complex Fibonacci residues | |
dc.type | Otro | |