dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Kozlowski, Andrzej | |
dc.date | 2016-10-26T17:51:33Z | |
dc.date | 2016-10-26T17:51:33Z | |
dc.date.accessioned | 2017-04-06T11:52:43Z | |
dc.date.available | 2017-04-06T11:52:43Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/362639 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/7185 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/958921 | |
dc.description | Complex plane, sequence, convergence, fractal structure, Newton's Method for Approximating Square Roots | |
dc.description | Use the controls to vary the position of the starting point in the complex plane. Coloring each point in the plane according to whether the sequence with that initial point converges to the positive (pink) or negative (green) root yields an intricate fractal structure. A part of this structure can be seen by checking the fractal background checkbox. However, do not attempt to manipulate the controls with this option checked unless you are using a very fast computer.
The blue points belong to the so-called Julia set of the fractal. Close to these points convergence of the sequence becomes unpredictable | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram Demonstration Project | |
dc.relation | ConvergenceOfNewtonsMethodForApproximatingSquareRoots.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Newton's Method | |
dc.subject | Approximating Square Roots | |
dc.subject | Convergence | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise | |
dc.title | Convergence of Newton's method for approximating square roots | |
dc.type | Otro | |