dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorKozlowski, Andrzej
dc.date2016-10-26T17:51:33Z
dc.date2016-10-26T17:51:33Z
dc.date.accessioned2017-04-06T11:52:43Z
dc.date.available2017-04-06T11:52:43Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/362639
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/7185
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/958921
dc.descriptionComplex plane, sequence, convergence, fractal structure, Newton's Method for Approximating Square Roots
dc.descriptionUse the controls to vary the position of the starting point in the complex plane. Coloring each point in the plane according to whether the sequence with that initial point converges to the positive (pink) or negative (green) root yields an intricate fractal structure. A part of this structure can be seen by checking the fractal background checkbox. However, do not attempt to manipulate the controls with this option checked unless you are using a very fast computer. The blue points belong to the so-called Julia set of the fractal. Close to these points convergence of the sequence becomes unpredictable
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationConvergenceOfNewtonsMethodForApproximatingSquareRoots.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectNewton's Method
dc.subjectApproximating Square Roots
dc.subjectConvergence
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise
dc.titleConvergence of Newton's method for approximating square roots
dc.typeOtro


Este ítem pertenece a la siguiente institución