dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Schreiber, Michael | |
dc.date | 2016-10-26T17:50:36Z | |
dc.date | 2016-10-26T17:50:36Z | |
dc.date.accessioned | 2017-04-06T11:48:51Z | |
dc.date.available | 2017-04-06T11:48:51Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/362158 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/9186 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/958440 | |
dc.description | Knowledge about combinatorics, fractals, generation of form, graph theory, nested patterns, recursion, representations of numbers, short programs and tiling | |
dc.description | The Delannoy number D(x, y) gives the number of ways to reach point {x, y} (with non-negative integer coordinates) from the origin using only certain moves. They may be either up {0, 1}, to the right {1, 0} or one step along the diagonal {1, 1}. Plots of D (x, y) mod n show nested fractal patterns | |
dc.description | Componente Curricular::Ensino Médio::Matemática | |
dc.publisher | Wolfram Demonstrations Project | |
dc.relation | 255DelannoyNumberCarpet.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Combinatorics | |
dc.subject | Fractals | |
dc.subject | Generation of Form | |
dc.subject | Graph Theory | |
dc.subject | Nested Patterns | |
dc.subject | Recursion | |
dc.subject | Representations of Numbers | |
dc.subject | Short Programs | |
dc.subject | Tiling | |
dc.subject | Educação Básica::Ensino Médio::Matemática::Tecnologia para a matemática | |
dc.title | Delannoy number carpet | |
dc.type | Otro | |