dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorZizi, Jacqueline
dc.date2016-10-26T17:49:01Z
dc.date2016-10-26T17:49:01Z
dc.date.accessioned2017-04-06T11:42:14Z
dc.date.available2017-04-06T11:42:14Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/361351
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5950
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/957633
dc.descriptionKnowledge about algorithms, discrete mathematics, number theory and tree
dc.descriptionThe 3n+1 process constructs a sequence starting with n and iterating this process: if n is even, compute n/2, and if n is odd, compute 3n+1. Connect two successive numbers in such a sequence by an arrow to get a graph. Take all the sequences up to a maximum starting number to get the bigger graph shown here. A pair of numbers may be joined by several edges because the sequences from different starting numbers can overlap
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.relation1573n1Graph.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectAlgorithm
dc.subjectDiscrete mathematics
dc.subjectNumber theory
dc.subjectTeoria do número
dc.subjectSequência númerica
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Numérica
dc.title3n+1 graph
dc.typeOtro


Este ítem pertenece a la siguiente institución