dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Zizi, Jacqueline | |
dc.date | 2016-10-26T17:49:01Z | |
dc.date | 2016-10-26T17:49:01Z | |
dc.date.accessioned | 2017-04-06T11:42:14Z | |
dc.date.available | 2017-04-06T11:42:14Z | |
dc.identifier | http://acervodigital.unesp.br/handle/unesp/361351 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/5950 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/957633 | |
dc.description | Knowledge about algorithms, discrete mathematics, number theory and tree | |
dc.description | The 3n+1 process constructs a sequence starting with n and iterating this process: if n is even, compute n/2, and if n is odd, compute 3n+1.
Connect two successive numbers in such a sequence by an arrow to get a graph. Take all the sequences up to a maximum starting number to get the bigger graph shown here. A pair of numbers may be joined by several edges because the sequences from different starting numbers can overlap | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.relation | 1573n1Graph.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Algorithm | |
dc.subject | Discrete mathematics | |
dc.subject | Number theory | |
dc.subject | Teoria do número | |
dc.subject | Sequência númerica | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise Numérica | |
dc.title | 3n+1 graph | |
dc.type | Otro | |