dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBeck, George
dc.date2016-10-26T17:48:40Z
dc.date2016-10-26T17:48:40Z
dc.date.accessioned2017-04-06T11:40:41Z
dc.date.available2017-04-06T11:40:41Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/361161
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/6001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/957443
dc.descriptionIf the center of the cone is in the plane, the intersection is a point, a straight line, or a pair of straight lines, depending on the angle of the axis of the cone. If the center of the cone is not in the plane, the intersection is a conic section. Let v be the angle of the cone, that is, the angle between the axis and one of the generating lines of the cone. You get a circle if the angle is 0 or Pi, an ellipse if the angle is between 0 and Pi-v (or between Pi+v and 2*Pi ), a parabola if the angle is Pi =/= v, and a hyperbola if the angle is within v of Pi
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.relationIntersectingARotatingConeWithAPlane.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectCone
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Geometria e Topologia
dc.titleIntersecting a rotating cone with a plane
dc.typeOtro


Este ítem pertenece a la siguiente institución