dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMaes, Chris
dc.date2016-10-26T17:48:08Z
dc.date2016-10-26T17:48:08Z
dc.date.accessioned2017-04-06T11:38:27Z
dc.date.available2017-04-06T11:38:27Z
dc.identifierhttp://acervodigital.unesp.br/handle/unesp/360888
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5347
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/957170
dc.descriptionWhen a matrix A is square with full rank, there is a vector x that satisfies the equation Ax=b for any b. However, when A is not square or does not have full rank, such an x may not exist, because b does not lie in the range of A. In this case, called the least squares problem, we seek the vector x that minimizes the length (or norm) of the residual vector r=Ax-b. The four vectors Ax, b, r, and rmin are color coded and the plane is the range of the matrix A. The plane shown is the set of all possible vectors Ax
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram
dc.relationLeastSquares.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectApproximation Methods
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
dc.titleLeast Squares
dc.typeOtro


Este ítem pertenece a la siguiente institución