dc.contributorUniversidad EAFIT
dc.creatorCortés, Lina M
dc.creatorMosquera, Stephania
dc.creatorGaleano, Juan
dc.creatorMena, Luis
dc.date.accessioned2024-07-02T15:36:10Z
dc.date.accessioned2024-08-05T15:48:42Z
dc.date.available2024-07-02T15:36:10Z
dc.date.available2024-08-05T15:48:42Z
dc.date.created2024-07-02T15:36:10Z
dc.date.issued2021
dc.identifierhttps://hdl.handle.net/10784/34065
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9537978
dc.description.abstractThe purpose of this research is to use a sample to predict the probability of default of the Colombian government, using machine learning techniques that seek to create prediction algorithms. The success of the algorithm relies on the quality of the data used (Mohri et al., 2018). One is interested in applying the best method to create the algorithm, which requires a testing and adjustment process based on the observations taken. The most popular methods in machine learning are logistic regressions, decision trees, random decision forests, support vector machines (SVM), Naive Bayes, K Nearest Neighbor (KNN), K-means (Shafer et al., 1996). The different methods are trained and tested according to the data and literature review.
dc.languagespa
dc.publisherUniversidad EAFIT
dc.publisherGrupo de Investigación en Finanzas y Banca. Semillero de Investigacion Bufete Financiero
dc.publisherEscuela de Finanzas, Economía y Gobierno
dc.publisherMedellín
dc.relationPREDICTING COLOMBIAN SOVEREIGN DEFAULT PROBABILITY USING MACHINE LEARNING
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsAcceso cerrado
dc.rightsCopyright (c) 2021 © Universidad EAFIT. Vicerrectoría CTeI
dc.sourcePREDICTING COLOMBIAN SOVEREIGN DEFAULT PROBABILITY USING MACHINE LEARNING
dc.subjectImpago
dc.subjectCDS
dc.subjectsoberano
dc.subjectprobabilidades
dc.titleProceso de ASC - PREDICTING COLOMBIAN SOVEREIGN DEFAULT PROBABILITY USING MACHINE LEARNING
dc.typeinfo:eu-repo/semantics/report
dc.typereport
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución