dc.creatorMarenco, Javier
dc.creatorKoch, Ivo
dc.date.accessioned2023-06-15T14:19:10Z
dc.date.accessioned2024-08-01T16:54:44Z
dc.date.available2023-06-15T14:19:10Z
dc.date.available2024-08-01T16:54:44Z
dc.date.created2023-06-15T14:19:10Z
dc.date.issued2022
dc.identifierhttps://repositorio.utdt.edu/handle/20.500.13098/11877
dc.identifierhttps://doi.org/10.1016/j.dam.2021.09.031
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9536967
dc.description.abstractGiven a matrix with real-valued entries, the maximum 2D subarray problem consists in finding a rectangular submatrix with consecutive rows and columns maximizing the sum of its entries. In this work we start a polyhedral study of an integer programming formulation for this problem.We thus define the 2D subarray polytope, explore conditions ensuring the validity of linear inequalities, and provide several families of facet-inducing inequalities. We also report com- putational experiments assessing the reduction of the dual bound for the linear relaxation achieved by these families of inequalities.
dc.relationKoch, I., & Marenco, J. (2022). The maximum 2D subarray polytope: Facet-inducing inequalities and polyhedral computations. Discrete Applied Mathematics, 323, 286–301. https://doi.org/10.1016/j.dam.2021.09.031
dc.rightshttps://creativecommons.org/licenses/by-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMaximum subarray problem
dc.subjectInteger programming
dc.subjectFacets
dc.titleThe maximum 2D subarray polytope: facet-inducing inequalities and polyhedral computations
dc.typeinfo:eu-repo/semantics/preprint


Este ítem pertenece a la siguiente institución