dc.contributorDel Corro, Luciano
dc.creatorRivas, Richard
dc.date.accessioned2024-07-26T22:01:36Z
dc.date.accessioned2024-08-01T16:54:39Z
dc.date.available2024-07-26T22:01:36Z
dc.date.available2024-08-01T16:54:39Z
dc.date.created2024-07-26T22:01:36Z
dc.date.issued2024
dc.identifierhttps://repositorio.utdt.edu/handle/20.500.13098/12917
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9536941
dc.description.abstractThe present work aims to create a Machine Learning model using unstructured text data in order to predict whether a position is prone to taking a longer Time to Fill than the overall average. As well as building an initial categorization of profiles within the organizations in which it was carried out, this will help to provide insights that allow understanding both the demand and supply of different job profiles using different Natural Language Processing and Unsupervised Machine Learning techniques. The processing of the text data will be done by using an open source Language Model (LLM) in order to generate their corresponding document embeddings.
dc.publisherUniversidad Torcuato Di Tella
dc.rightshttps://creativecommons.org/licenses/by-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPredicción tecnológica
dc.subjectTechnological Prediction
dc.subjectNatural Language Processing
dc.titleJob profile demand understanding in international financial organizations: a natural language processing approach
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:ar-repo/semantics/tesis de maestría


Este ítem pertenece a la siguiente institución