dc.creatorMartos Venturini, Gabriel
dc.creatorHernández, Nicolás
dc.creatorMuñoz, Alberto
dc.date.accessioned2023-08-16T22:07:46Z
dc.date.accessioned2024-08-01T16:49:46Z
dc.date.available2023-08-16T22:07:46Z
dc.date.available2024-08-01T16:49:46Z
dc.date.created2023-08-16T22:07:46Z
dc.date.issued2023
dc.identifierhttps://repositorio.utdt.edu/handle/20.500.13098/11992
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9536461
dc.description.abstractIn this paper, we propose a novel approach to address the problem of functional outlier detection. Our method leverages a low-dimensional and stable representation of functions using Reproducing Kernel Hilbert Spaces (RKHS).We define a depth measure based on density kernels that satisfy desirable properties.We also address the challenges associated with estimating the density kernel depth. Throughout aMonte Carlo simulation we assess the performance of our functional depth measure in the outlier detection task under different scenarios. To illustrate the effectiveness of our method, we showcase the proposed method in action studying outliers in mortality rate curves.
dc.publisherSpringer Nature
dc.publisherInternational Journal of Data Science and Analytics
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFunctional Data
dc.subjectDepth measures
dc.subjectOutlier detection
dc.subjectMortality curves
dc.titleDensity kernel depth for outlier detection in functional data
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución