dc.contributorMartos Venturini, Gabriel
dc.creatorTesta Smirne, Elianna
dc.date.accessioned2023-06-15T16:21:20Z
dc.date.accessioned2024-08-01T16:45:17Z
dc.date.available2023-06-15T16:21:20Z
dc.date.available2024-08-01T16:45:17Z
dc.date.created2023-06-15T16:21:20Z
dc.date.issued2022
dc.identifierhttps://repositorio.utdt.edu/handle/20.500.13098/11878
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9536064
dc.description.abstractIn recent years the Uruguayan education system has positioned itself among the worst in the region in terms of completion of secondary education and repetition in primary education. Despite the fact that there is enough empirical evidence reflected in a long discussion in articles and specialized journals that these two phenomena are related, most of the actions taken to prevent disengagement from formal education are aimed at students from the middle education level. By the use of statistical models and machine learning this work aims to identify who are these primary school students who have a higher repetition risk, in order to be able to take the most appropriate prescriptive actions. These actions would help prevent school dropout and have a positive impact, so that students at risk could successfully complete the primary education cycle and also have greater possibilities of finishing the secondary and higher education cycle.
dc.publisherUniversidad Torcuato Di Tella
dc.rightshttps://creativecommons.org/licenses/by-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectUruguayan education system
dc.subjectPrevention of disengagement
dc.subjectDeserción escolar
dc.subjectRendimiento escolar
dc.subjectCalidad de la Educación
dc.titleDiseño de políticas de apoyo escolar dirigidas a estudiantes de primaria con alto riesgo de repetición: Un enfoque basado en modelos de aprendizaje automático
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:ar-repo/semantics/tesis de maestría


Este ítem pertenece a la siguiente institución