dc.creatorLamarche, Carlos
dc.date2023-09
dc.date2023-09-07T17:30:05Z
dc.date.accessioned2024-07-24T03:53:04Z
dc.date.available2024-07-24T03:53:04Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/157397
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9535550
dc.descriptionRecent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.
dc.descriptionCentro de Estudios Distributivos, Laborales y Sociales
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectCiencias Económicas
dc.subjectQuantile regression
dc.subjectMisclassification
dc.subjectEndogenous Treatments
dc.subjectSurvey data
dc.titleQuantile regression with an endogenous misclassified binary regressor
dc.typeArticulo
dc.typeDocumento de trabajo


Este ítem pertenece a la siguiente institución