dc.creatorMartinez Saucedo, Ana
dc.creatorInchausti, Pablo Ezequiel
dc.date2023-05
dc.date2023-08-29T15:28:53Z
dc.date.accessioned2024-07-24T03:47:18Z
dc.date.available2024-07-24T03:47:18Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/157006
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9535187
dc.descriptionIn recent years, the severity of forest fires has reached worrying levels both internationally and nationally. However, thanks to the advance of technology, it is possible to predict forest fires occurrence and magnitude through Machine Learning models specially developed for this purpose. To achieve this goal, this paper describes the development of an automated data pipeline in the Python programming language that generates a forest. fires dataset specific to Pinamar area, thus allowing the subsequent training of predictive fire models. It is also configurable to gather meteorological, topographical and fuel data from other geographical areas.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format2-18
dc.languagees
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsCreative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.subjectCiencias Informáticas
dc.subjectincendios forestales
dc.subjectmedio ambiente
dc.subjectdatos abiertos
dc.subjectmachine learning
dc.subjectremote sensing
dc.titleA data pipeline for forest fire prediction in Pinamar
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución