dc.creatorda Silva Camargo, Sandro
dc.creatorLopes Silva, Gabriel
dc.date2023-05
dc.date2023-08-23T17:47:37Z
dc.date.accessioned2024-07-24T03:42:20Z
dc.date.available2024-07-24T03:42:20Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/156748
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9534924
dc.descriptionThis work aims to evaluate the accuracy of Long Short-Term Memory Neural Networks to recommend Buy/Sell signals of some Brazilian Stock Market Blue Chips. The population of this study was composed by top 5 volume stocks, which represented nearly 40% of the total volume of Brazilian Stock Market in 2019. It was analyzed the following features: volume traded, closing and opening price, maximum and minimum price, and last five-day closing prices. Models created can forecast the next day’s opening or closing price. Obtained results show that forecasting and real values have a coefficient of determination (R2) from 0.91 to 0.99, depending on the stock.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format37-52
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsCreative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.subjectCiencias Informáticas
dc.subjectVariable Income
dc.subjectBovespa
dc.subjectTime Series
dc.subjectRecurrent Neural Networks
dc.subjectFinance
dc.titleRecommending buy/sell in brazilian stock market through long short-term memory
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución