dc.creatorCano, Cristina
dc.creatorMosconi, Irene
dc.creatorStojanoff, Demetrio
dc.date2005
dc.date2023-08-15T14:45:02Z
dc.date.accessioned2024-07-24T03:33:28Z
dc.date.available2024-07-24T03:33:28Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/156335
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9534529
dc.descriptionLet L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.
dc.descriptionUniversidad del Comahue
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format53-66
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectMatemática
dc.subjectpositive matrices
dc.subjectinequalities
dc.subjectunitarily invariant norm
dc.titleSome operator inequalities for unitarily invariant norms
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución