dc.creator | Cano, Cristina | |
dc.creator | Mosconi, Irene | |
dc.creator | Stojanoff, Demetrio | |
dc.date | 2005 | |
dc.date | 2023-08-15T14:45:02Z | |
dc.date.accessioned | 2024-07-24T03:33:28Z | |
dc.date.available | 2024-07-24T03:33:28Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/156335 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9534529 | |
dc.description | Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases. | |
dc.description | Universidad del Comahue | |
dc.description | Facultad de Ciencias Exactas | |
dc.format | application/pdf | |
dc.format | 53-66 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
dc.subject | Matemática | |
dc.subject | positive matrices | |
dc.subject | inequalities | |
dc.subject | unitarily invariant norm | |
dc.title | Some operator inequalities for unitarily invariant norms | |
dc.type | Articulo | |
dc.type | Articulo | |