dc.date.accessioned2024-06-25T20:45:50Z
dc.date.available2024-06-25T20:45:50Z
dc.identifierhttps://repositorio.cecar.edu.co/handle/cecar/10037
dc.identifierhttps://doi.org/10.21892/9786287515376
dc.identifier978-628-7515-37-6
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9504647
dc.descriptionEn diciembre de 2019, China reconoció una serie de casos de infecciones respiratorias agudas. En enero de 2020, el virus se había propagado a otros países de Asia, y en febrero de ese año, la Organización Mundial de la Salud declaró la alerta sobre una posible pandemia. El 24 de marzo, Colombia declaró el cierre de sus fronteras y comenzó un confinamiento de 4 meses con el objetivo de contener la propagación del SARS-CoV-2. No obstante, al igual que en otros países, el virus se propagó y causó millones de infecciones y muertes. La comunidad médica recordaba la gripe española de la década de 1920, pero no sabía cómo tratar a tantos enfermos. Las medidas de bioseguridad se extremaron como la única opción para contener la avalancha de casos y el colapso de los hospitales y las unidades de cuidados intensivos. Algunos, de forma errónea, se aferraron a fármacos antiparasitarios y antibacterianos para curar un virus. En abril de 2020, en un intento por agilizar y otorgar diagnósticos oportunos de COVID-19, el Instituto Nacional de Salud avaló los laboratorios de las universidades con infraestructura y experiencia en técnicas moleculares. Esto permitió al país contar simultáneamente con cientos de laboratorios públicos y privados que diagnosticaban miles de casos diarios del nuevo coronavirus. Por otro lado, la búsqueda para identificar el vector, los reservorios y los huéspedes accidentales del SARS-CoV-2 demostró que los animales domésticos como perros, gatos y animales en cautiverio en los zoológicos podían padecer la enfermedad del COVID-19. Lo más preocupante era que los virus mutaban en esos animales, lo que indicaba la posibilidad de un salto interespecies de los virus con cambios preocupantes en su genoma que podrían volverse más virulentos. Paralelamente, se declaró la emergencia para agilizar los estudios preclínicos y clínicos de las nuevas vacunas contra el SARS-CoV-2 y, en diciembre de 2021, se otorgaron licencias para las vacunas de ARN mensajero, seguidas de vacunas inactivadas químicamente y otras plataformas. Mientras ocurrían las olas o picos epidemiológicos, el virus mutaba y aparecían las variantes, y la población adulta sana adquiría inmunidad natural. En febrero de 2022, se empezaron a aplicar las primeras dosis de la vacuna al personal sanitario y a los adultos mayores. A finales de 2022, a pesar de estar vacunados, se reportaron casos de reinfecciones. En 2023, apareció la variante ómicron y sus subvariantes, que en este momento predominan en el hemisferio norte. Estas nuevas subvariantes evaden la respuesta inmune de los vacunados y de los infectados naturalmente; sin embargo, no parecen ser más agresivas que la cepa ancestral de Wuhan, posiblemente porque de alguna manera tanto la infección natural como la heteróloga están protegiendo a la población. Actualmente, el país ha experimentado una disminución de casos y la mortalidad ha caído a niveles bajos, habiendo alcanzado una cobertura de vacunación del 70% con dos dosis. No obstante, desde el punto de vista epidemiológico, y a pesar del esfuerzo del personal sanitario, Colombia ocupó el quinto puesto de los 13 países de América del Sur con mayor mortalidad. A nivel global, de 231 países, Colombia quedó en el primer cuartil de mortalidad en el puesto 31.
dc.descriptionAgradecimientos Introducción Capítulo 1 Biología de los coronavirus Jorge Miranda; Ketty Galeano; Evelin Garay Capítulo 2 Inmunopatogénesis de la Infección por SARS-CoV-2 Héctor Serrano-Coll; Ricardo Rivero-Herrera Capítulo 3 Aspectos clínicos y tratamiento de la infección por SARS-CoV-2 José Berrocal; Teresa Carreño; Alejandra Arosemena; Salim Mattar Capítulo 4 Epidemiología de la pandemia por COVID-19 Verónica Contreras; Liliana Sánchez-Lerma; Bertha Gastelbondo-Pastrana; Ricardo Rivero-Herrera; Salim Máttar Capítulo 5 Tecnologías diagnósticas para la detección de SARS-CoV-2 Bertha Gastelbondo-Pastrana; Héctor Contreras; Karina Torres; Alejandra Arosemena; Daniel Echeverri-De la Hoz, Evelin Garay; Esteban Paternina; Luis Flórez; Germán Arrieta; Eimi Brango; Camilo Guzmán Capítulo 6 SARS-CoV-2 y la vacunación: situación actual y futuros escenarios Daniel Echeverri-De la Hoz, Alejandra García; Salim Máttar Capítulo 7 Riesgo zoonótico por Coronavirus Caty Martínez; Yésica Botero; Yésica López; Monica Lozano; Ader Alemán; Camilo Guzmán; Alfonso Calderón Capítulo 8 Importancia de la bioseguridad en el contexto de la pandemia por SARS-Cov-2 Andrés Bonfante; Luisa Mendoza; Vaneza Tique-Salleg; Jorge Miranda; Yonairo Herrera; Verónica Contreras; Iván Llorente; Germán Arrieta; Eimi Brango; Salim Mattar Capítulo 9 Material particulado, ¿un vehículo transmisor para el SARSCoV-2? José Marrugo-Negrete; Roberth Paternina-Uribe; Mauricio Rosso-Pinto; Ivonne Negrete; María Mendoza; Clelia Calao-Ramos; Luz López; Nazly Cepeda-Ortega, María Arriola-Salgado; Salim Mattar Capítulo 10 Resultados del aprendizaje del IIBT durante la pandemia: detección molécular de SARS-CoV-2 Héctor Contreras; Bertha Gastelbondo-Pastrana; Karina Torres; Verónica Contreras; Daniel Echeverri-De la Hoz; Luis Flórez; Evelin Garay, Salim Mattar Capítulo 11 Generación de nuevo conocimiento durante la pandemia: un aporte del Instituto de Investigaciones Biológicas del Trópico (IIBT) Salim Mattar, Bertha Gastelbondo- Pastrana
dc.description1ra
dc.format311 Páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad de Córdoba.
dc.publisherSincelejo,Sucre (Colombia)
dc.relationFehr AR, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier HJ, Bickerton E, Britton P, editors. Coronaviruses: Methods and Protocols. New York, NY: Springer New York; 2015. p. 1-23.
dc.relationJohns Hopkins University & Medicine, Coronavirus Resource Center [Available from: https://coronavirus.jhu.edu/.
dc.relationCui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019;17(3):181-92.
dc.relationChen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and. Journal of medical virology. 2020;92(10):2249.
dc.relationTang D, Comish P, Kang R. The hallmarks of COVID-19 disease. PLoS pathogens. 2020;16(5):e1008536.
dc.relationBosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion corecomplex. Journal of virology. 2003;77(16):8801-11.
dc.relation. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology journal. 2019;16(1):69.
dc.relationNeuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. Journal of structural biology. 2011;174(1):11-22.
dc.relation. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal ofvirology. 2012;86(7):3995-4008.
dc.relationYeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT,et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. (6377):420-2.
dc.relationDelmas B, Gelfi J, L’Haridon R, Vogel LK, Sjostrom H, Noren O, et al. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature.1992;357(6377):417-20.
dc.relation. Li W, Luo R, He Q, van Kuppeveld FJM, Rottier PJM, Bosch BJ. Aminopeptidase N isnot required for porcine epidemic diarrhea virus cell entry. Virus research. 2017;235:6-13.
dc.relationDye C, Temperton N, Siddell SG. Type I feline coronavirus spike glycoprotein fails torecognize aminopeptidase N as a functional receptor on feline cell lines. The Journal ofgeneral virology. 2007;88(Pt 6):1753-60.
dc.relationBenbacer L, Kut E, Besnardeau L, Laude H, Delmas B. Interspecies aminopeptidase-Nchimeras reveal species-specific receptor recognition by canine coronavirus, feline in-fectious peritonitis virus, and transmissible gastroenteritis virus. Journal of virology.1997;71(1):734-7.
dc.relationHofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(22):7988-93.
dc.relationSchultze B, Herrler G. Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. The Journal of general virology. 1992;73 ( Pt 4):901-6.
dc.relationRaj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251-4.
dc.relation. Nedellec P, Dveksler GS, Daniels E, Turbide C, Chow B, Basile AA, et al. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. Journal of virology. 1994;68(7):4525-37.
dc.relationLi W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-convertingenzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4.
dc.relationWu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell host & microbe. 2020;27(3):325-8.
dc.relationTizaoui K, Zidi I, Lee KH, Ghayda RA, Hong SH, Li H, et al. Update of the current knowledge on genetics, evolution, immunopathogenesis, and transmission for coronavirus disease 19 (COVID-19). International journal of biological sciences. 2020;16(15):2906-23.
dc.relation. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.
dc.relation. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine. 2020;382(8):727-33.
dc.relationLam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al. Identifying SARS-CoV-2- related coronaviruses in Malayan pangolins. Nature. 2020;583(7815):282-5.
dc.relationWu F, Zhao S, Yu B, Chen Y-M, Wang W, Hu Y, et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv. 2020:2020.01.24.919183.
dc.relationOgando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity. Frontiers in microbiology. 2019;10:1813.
dc.relationOostra M, de Haan CA, Rottier PJ. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. Journal of virology. 2007;81(24):13876-88.
dc.relation. Jahanafrooz Z, Chen Z, Bao J, Li H, Lipworth L, Guo X. An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene. 2022;808:145963.
dc.relation. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral research. 2018;149:58-74.
dc.relationSong W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens. 2018;14(8):e1007236.
dc.relationPillaiyar T, Wendt LL, Manickam M, Easwaran M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Medicinal research reviews. 2021;41(1):72-135.
dc.relationWan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of virology. 2020;94(7).
dc.relationHoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80 e8.
dc.relationZiebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. The Journal of general virology. 2000;81(Pt 4):853-79.
dc.relation. Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther. 2022;7(1):26.
dc.relationde Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Advances in virus research. 2005;64:165-230.
dc.relationCosar B, Karagulleoglu ZY, Unal S, Ince AT, Uncuoglu DB, Tuncer G, et al. SARS-CoV-2 Mutations and their Viral Variants. Cytokine Growth Factor Rev. 2022;63:10-22.
dc.relationYang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 25 de julio de 2020;5(1):128.
dc.relationAbbas A, Lichtman A, Pillai S. Cellular and molecular immunology [Internet]. Elsevier/ Saunders; 2015 [citado 14 de enero de 2017]. Disponible en: https://www.ncbi.nlm.nih. gov/nlmcatalog/101630458
dc.relationAbbas A, Lichtman A, Pillai S. Cellular and molecular immunology [Internet]. Elsevier/ Saunders; 2015 [citado 14 de enero de 2017]. Disponible en: https://www.ncbi.nlm.nih. gov/nlmcatalog/101630458.
dc.relationTotura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, et al. TollLike Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 26 de mayo de 2015;6(3):e00638-00615.
dc.relationHosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, et al. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother Biomedecine Pharmacother. diciembre de 2020;132:110859.
dc.relationBrandão SCS, Ramos J de OX, Dompieri LT, Godoi ETAM, Figueiredo JL, Sarinho ESC, et al. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev. 21 de septiembre de 2020;
dc.relationFu Y-Z, Wang S-Y, Zheng Z-Q, Yi Huang null, Li W-W, Xu Z-S, et al. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell Mol Immunol. 27 de octubre de 2020;
dc.relationXia H, Cao Z, Xie X, Zhang X, Chen JY-C, Wang H, et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 6 de octubre de 2020;33(1):108234.
dc.relationMu X, Ahmad S, Hur S. Chapter Two–Endogenous Retroelements and the Host Innate Immune Sensors. En: Advances in Immunology. 2016. p. 47-69.
dc.relation. Shi G, Kenney AD, Kudryashova E, Zani A, Zhang L, Lai KK, et al. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J. 3 de diciembre de 2020;e106501.
dc.relationKim YK, Shin JS, Nahm MH. NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med J. enero de 2016;57(1):5-14.
dc.relation. Freeman TL, Swartz TH. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front Immunol. 2020;11:1518.
dc.relation. Shah A. Novel Coronavirus-Induced NLRP3 Inflammasome Activation: A Potential Drug Target in the Treatment of COVID-19. Front Immunol. 2020;11:1021.
dc.relationGibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust. julio de 2020;213(2):54-56.e1.
dc.relationBonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S33-40.
dc.relationMolaei S, Dadkhah M, Asghariazar V, Karami C, Safarzadeh E. The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. Int Immunopharmacol. 29 de septiembre de 2020;92:107051.
dc.relationShah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol. 2020;11:1949.
dc.relationZhang F, Gan R, Zhen Z, Hu X, Li X, Zhou F, et al. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct Target Ther. 14 de agosto de 2020;5(1):156.
dc.relationWibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. BioRxiv Prepr Serv Biol. 19 de enero de 2021;
dc.relationWibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. BioRxiv Prepr Serv Biol. 19 de enero de 2021;
dc.relationMotozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 14 de julio de 2021;29(7):1124-1136.e11.
dc.relationNi L, Ye F, Cheng M-L, Feng Y, Deng Y-Q, Zhao H, et al. Detection of SARS-CoV-2- Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 16 de junio de 2020;52(6):971-977.e3.
dc.relationCarrillo J, Izquierdo-Useros N, Ávila-Nieto C, Pradenas E, Clotet B, Blanco J. Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochem Biophys Res Commun. 7 de noviembre de 2020;
dc.relationTaefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathog Basel Switz. 8 de diciembre de 2020;9(12).
dc.relationLee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. octubre de 2020;5(10):1185-91.
dc.relationWen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, et al. Antibody-dependent enhancement of coronavirus. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. noviembre de 2020;100:483-9.
dc.relationWu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.
dc.relationAragón-Nogales R, Vargas-Almanza I, Miranda-Novales MG. COVID-19 por SARSCoV-2: La nueva emergencia de salud. Rev Mex Pediatr. 2019;86(6):213–8.
dc.relationRamanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(20):497–506.
dc.relationHuang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet [Internet]. 2020 Feb 15;395(10223):497– 506. Available from: https://doi.org/10.1016/S0140-6736(20)30183-5
dc.relationGarcia-alamino JM. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . 2020;(January).
dc.relationGuan W jie, Ni Z yi, Hu Y, Liang W hua, Ou C quan, He J xing, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.
dc.relationNovel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi. 2020;41(2):145.
dc.relationJin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002–9.
dc.relationChen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ [Internet]. 2020;368(March):1–14. Available from: http://dx.doi.org/doi:10.1136/bmj.m1091
dc.relationButowt R, Bilinska K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem Neurosci. 2020;11(9):1200–3.
dc.relationZhao H. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. Guillain-Barré Syndr Assoc with SARS-CoV-2 Infect causality or coincidence? 2020;(January):3.
dc.relationZhu J, Ji P, Pang J, Zhong Z, Li H, He C, et al. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol [Internet]. 2020 Oct 1;92(10):1902–14. Available from: https://doi.org/10.1002/jmv.25884
dc.relation. Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol. 2020;30(3):313–24.
dc.relationNational Institutes of Health. Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19). Nih [Internet]. 2021;2019:1–243. Available from: https://www. covid19treatmentguidelines.nih.gov/.%0Ahttps://www.covid19treatmentguidelines. nih.gov/
dc.relation. Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care [Internet]. 2020;24(1):91. Available from: https://doi.org/10.1186/ s13054-020-2818-6
dc.relationJean SS, Lee PI, Hsueh PR. COVID 19 treatment. J Microbiol Immunol Infect [Internet]. 2020;53(3):436. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32307245%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7129535%0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7129535/
dc.relationLi H, Liu S ming, Yu X hua, Tang S lin, Tang C ke. Coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Int J Antimicrob Agents. 2020;55(5):105951.
dc.relationGordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773–9.
dc.relationTchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4):1–16.
dc.relationHolshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929–36.
dc.relationGrein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327–36.
dc.relationChandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther Clin Risk Manag. 2008;4(5):1023–33.
dc.relationAnderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, et al. Epidemiology, transmission dynamics and control of SARS: The 2002-2003 epidemic. Philos Trans R Soc B Biol Sci. 2004;359(1447):1091–105.
dc.relationJakovac H. The Pathophysiology of COVID-19 and SARS-CoV-2 infection: COVID-19: Is the ACE2 just a foe? Vol. 318, American Journal of Physiology–Lung Cellular and Molecular Physiology. 2020. p. L1025–6.
dc.relationLi Y, Cao Y, Zeng Z, Liang M, Xue Y, Xi C, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways. Sci Rep. 2015;5:8209.
dc.relationmai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–6.
dc.relation. Marshall RP, Gohlke P, Chambers RC, Howell DC, Bottoms SE, Unger T, et al. Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol–Lung Cell Mol Physiol. 2004;286(1):156–64.
dc.relationArabi YM, Hajeer AH, Luke T, Raviprakash K, Balkhy H, Johani S, et al. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg Infect Dis. 2016;22(9):1554–61.
dc.relationChang SC. Clinical findings, treatment and prognosis in patients with severe acute respiratory syndrome (SARS). J Chinese Med Assoc. 2005;68(3):106–7.
dc.relationChaolin Huang*, Yeming Wang*, Xingwang Li*, Lili Ren*, Jianping Zhao*, Yi Hu*, Li Zhang, Guohui Fan, Jiuyang Xu XG, Zhenshun Cheng, Ting Yu, Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, Wen Yin, Hui Li, Min Liu, Yan Xiao, Hong Gao, Li Guo JX, Guangfa Wang, Rongmeng Jiang, Zhancheng Gao, Qi Jin, Jianwei Wang† BC. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- research that is available on the COVID-19 resource centre–including this ScienceDirect Clinical characteris. J Formos Med Assoc. 2020;(January):19–20.
dc.relationHoffmann JHO, Enk AH. High-dose intravenous immunoglobulin in skin autoimmune disease. Front Immunol. 2019;10(JUN):1–7.
dc.relationMaude S, Frey N, Shaw P, Aplenc R, Barrett D, Bunin N, et al. CAR T cells for sustained remissions in leukemia. N Engl J Med. 2015;371(16):1507–17.
dc.relationB. Shakoory, M.D., Washington D, J.A. Carcillo MD, W. W. Chatham MD, R. L. Amdur PD, H. Zhao PD, C.A. Dinarello MD, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: Re-analysis of a prior Phase III trial. Crit Care Med. 2016;44(2):275–81.
dc.relationCron RQ, Chatham WW. The Rheumatologist’s Role in COVID-19. J Rheumatol. 2020;47(5):639–42.
dc.relationSiegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang L, et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J Med Chem. 2017;60(5):1648–61.
dc.relationLu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 22 de febrero de 2020;395(10224):565-74.
dc.relationChen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 15 de febrero de 2020;395(10223):507-13.
dc.relationAdhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 17 de marzo de 2020;9(1):29.
dc.relationZu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. agosto de 2020;296(2):E15-25.
dc.relation. Srivastava N, Baxi P, Ratho RK, Saxena SK. Global Trends in Epidemiology of Coronavirus Disease 2019 (COVID-19). En: Saxena SK, editor. Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics [Internet]. Singapore: Springer; 2020 [citado 5 de febrero de 2023]. p. 9-21. (Medical Virology: From Pathogenesis to Disease Control). Disponible en: https://doi.org/10.1007/978-981-15- 4814-7_2
dc.relationPisa M. Pisa M (2020) COVID-19, information problems, and digital surveillance. [Internet]. 2020. Disponible en: https://www.cgdev.org/blog/covid-19-information-problems-and-digital-surveillance
dc.relationSachs JD, Karim SSA, Aknin L, Allen J, Brosbøl K, Colombo F, et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. The Lancet. 8 de octubre de 2022;400(10359):1224-80.
dc.relationDrexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 1 de enero de 2014;101:45-56.
dc.relationWoo PCY, Lau SKP, Huang Y, Yuen KY. Coronavirus Diversity, Phylogeny and Interspecies Jumping. Exp Biol Med. 1 de octubre de 2009;234(10):1117-27.
dc.relationRambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. noviembre de 2020;5(11):1403-7.
dc.relation. Lytras S, Hughes J, Martin D, Swanepoel P, de Klerk A, Lourens R, et al. Exploring the Natural Origins of SARS-CoV-2 in the Light of Recombination. Genome Biol Evol. 1 de febrero de 2022;14(2):evac018.
dc.relationJiang X, Wang R. Wildlife trade is likely the source of SARS-CoV-2. Science. 26 de agosto de 2022;377(6609):925-6.
dc.relationGao G, Liu W, Liu P, Lei W, Jia Z, He X, et al. Surveillance of SARS-CoV-2 in the environment and animal samples of the Huanan Seafood Market [Internet]. In Review; 2022 feb [citado 6 de febrero de 2023]. Disponible en: https://www.researchsquare.com/article/rs-1370392/v1
dc.relationPekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science. 26 de agosto de 2022;377(6609):960-6.
dc.relationWorobey M, Levy JI, Malpica Serrano L, Crits-Christoph A, Pekar JE, Goldstein SA, et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science. 26 de agosto de 2022;377(6609):951-9.
dc.relationSingh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J. 13 de agosto de 2021;18(1):166.
dc.relationVijgen L, Lemey P, Keyaerts E, Van Ranst M. Genetic Variability of Human Respiratory Coronavirus OC43. J Virol. marzo de 2005;79(5):3223-5.
dc.relationBanerjee A, Doxey AC, Tremblay BJM, Mansfield MJ, Subudhi S, Hirota JA, et al. Predicting the recombination potential of severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. J Gen Virol. 2020;101(12):1251-60.
dc.relationKemp SA, Meng B, Ferriera IA, Datir R, Harvey WT, Papa G, et al. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70 [Internet]. bioRxiv; 2021 [citado 7 de febrero de 2023]. p. 2020.12.14.422555. Disponible en: https://www.biorxiv. org/content/10.1101/2020.12.14.422555v6
dc.relationVolz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data [Internet]. medRxiv; 2021 [citado 7 de febrero de 2023]. p. 2020.12.30.20249034. Disponible en: https://www.medrxiv.org/content/10.1101/2020.12.30.20249034v2
dc.relationEstimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England | Science [Internet]. [citado 7 de febrero de 2023]. Disponible en: https://www.science.org/ doi/full/10.1126/science.abg3055
dc.relationGallaher WR. A palindromic RNA sequence as a common breakpoint contributor to copy-choice recombination in SARS-COV-2. Arch Virol. 1 de octubre de 2020;165(10):2341- 8.
dc.relationMagazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses. marzo de 2022;14(3):640.
dc.relationSeguimiento de las variantes del SARS-CoV-2 [Internet]. 2023. Disponible en: https:// www.who.int/es/activities/tracking-SARS-CoV-2-variants
dc.relationAguilar-Bretones M, Fouchier RAM, Koopmans MPG, Nierop GP van. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J Clin Invest [Internet]. 3 de enero de 2023 [citado 9 de mayo de 2023];133(1). Disponible en: https://www. jci.org/articles/view/162192
dc.relationLi Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 26 de marzo de 2020;382(13):1199-207.
dc.relationWang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 17 de marzo de 2020;323(11):1061-9.
dc.relationVivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 14 de julio de 2020;11(1):3572.
dc.relationHoseinzadeh E, Safoura Javan, Farzadkia M, Mohammadi F, Hossini H, Taghavi M. An updated min-review on environmental route of the SARS-CoV-2 transmission. Ecotoxicol Environ Saf. 1 de octubre de 2020;202:111015.
dc.relationHoseinzadeh E, Safoura Javan, Farzadkia M, Mohammadi F, Hossini H, Taghavi M. An updated min-review on environmental route of the SARS-CoV-2 transmission. Ecotoxicol Environ Saf. 1 de octubre de 2020;202:111015.
dc.relationShi Q feng, Chen X, Lin J bing, Hu B jie, Gao X dong. Aerosol transmission of coronavirus in hospital. Shanghai J Prev Med. 2020;851-851.
dc.relationAboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis. 2021;68(2):296-312.
dc.relationWu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw Open. 22 de agosto de 2022;5(8):e2228008.
dc.relation. Du Z, Liu C, Wang C, Xu L, Xu M, Wang L, et al. Reproduction Numbers of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants: A Systematic Review and Meta-analysis. Clin Infect Dis. 1 de julio de 2022;75(1):e293-5.
dc.relation. Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARSCoV-2 is several times relative to Delta. J Travel Med. 1 de abril de 2022;29(3):taac037.
dc.relationRashedi J, Poor BM, Asgharzadeh V, Pourostadi M, Kafil HS, Vegari A, et al. Risk Factors for COVID-19.
dc.relation. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 15 de febrero de 2020;395(10223):497-506.
dc.relationZimmermann P, Curtis N. Why Does the Severity of COVID-19 Differ With Age? Pediatr Infect Dis J. febrero de 2022;41(2):e36-45.
dc.relationRahman MM, Bhattacharjee B, Farhana Z, Hamiduzzaman M, Chowdhury MAB, Hossain MS, et al. Age-related Risk Factors and Severity of SARS-CoV-2 Infection: a systematic review and meta-analysis. J Prev Med Hyg. 30 de julio de 2021;E329 Pages.
dc.relationWu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 7 de abril de 2020;323(13):1239-42.
dc.relation. Brandi ML. Are sex hormones promising candidates to explain sex disparities in the COVID-19 pandemic? Rev Endocr Metab Disord. 1 de abril de 2022;23(2):171-83.
dc.relationSex- or Gender-specific Differences in the Clinical Presentation, Outcome, and Treatment of SARS-CoV-2. Clin Ther. 1 de marzo de 2021;43(3):557-571.e1.
dc.relationClinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 28 de marzo de 2020;395(10229):1054- 62.
dc.relationPitocco D, Fuso L, Conte EG, Zaccardi F, Condoluci C, Scavone G, et al. The Diabetic Lung - A New Target Organ? Rev Diabet Stud RDS. Spring de 2012;9(1):23.
dc.relationDu Y, Zhou N, Zha W, Lv Y. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: A meta-analysis. Nutr Metab Cardiovasc Dis. 10 de marzo de 2021;31(3):745-55.
dc.relationLuo L, Fu M, Li Y, Hu S, Luo J, Chen Z, et al. The potential association between common comorbidities and severity and mortality of coronavirus disease 2019: A pooled analysis. Clin Cardiol. 2020;43(12):1478-93.
dc.relationNoor FM, Islam MdM. Prevalence and Associated Risk Factors of Mortality Among COVID-19 Patients: A Meta-Analysis. J Community Health. 1 de diciembre de 2020;45(6):1270-82.
dc.relationFang X, Li S, Yu H, Wang P, Zhang Y, Chen Z, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging. 13 de julio de 2020;12(13):12493-503.
dc.relationKim SY, Yoo DM, Min C, Wee JH, Kim JH, Choi HG. Analysis of Mortality and Morbidity in COVID-19 Patients with Obesity Using Clinical Epidemiological Data from the Korean Center for Disease Control & Prevention. Int J Environ Res Public Health. enero de 2020;17(24):9336.
dc.relationSeidu S, Gillies C, Zaccardi F, Kunutsor SK, Hartmann-Boyce J, Yates T, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: A systematic review and meta-analysis. Endocrinol Diabetes Metab. 2021;4(1):e00176.
dc.relationObesity and impaired metabolic health in patients with COVID-19 | Nature Reviews Endocrinology [Internet]. [citado 9 de mayo de 2023]. Disponible en: https://www.nature.com/articles/s41574-020-0364-6
dc.relationAdipocytokines and the Metabolic Complications of Obesity | The Journal of Clinical Endocrinology & Metabolism | Oxford Academic [Internet]. [citado 9 de mayo de 2023]. Disponible en: https://academic.oup.com/jcem/article/93/11_supplement_1/ s64/2627217
dc.relationGreen WD, Beck MA. Obesity Impairs the Adaptive Immune Response to Influenza Virus. Ann Am Thorac Soc. noviembre de 2017;14(Supplement_5):S406-9.
dc.relationCoronavirus Resource Center [Internet]. [citado 10 de febrero de 2023]. Disponible en: https://coronavirus.jhu.edu/region
dc.relationCOVID-19 Coronavirus pandemic [Internet]. [citado 10 de febrero de 2023]. Disponible en: https://www.worldometers.info/coronavirus/
dc.relationHow health inequality affect responses to the COVID-19 pandemic in Sub-Saharan Africa | Elsevier Enhanced Reader [Internet]. [citado 24 de marzo de 2023]. Disponible en: https://reader.elsevier.com/reader/sd/pii/S0305750X20301935?token=8E01E18BBE0E82F40AC1CD9C7283F6DE99306F8FE7A74F5C7CF521AD2F 11A7A1605A02315CF0D042693702840608F048&originRegion=us-east-1&originCreation=20230324143652
dc.relationStats SA. Inequality trends in South Africa: A multidimensional diagnostic of inequality. Pretoria Stat South Afr. 2019;
dc.relationMorudu P, Kollamparambil U. Health shocks, medical insurance and household vulnerability: Evidence from South Africa. PLOS ONE. 7 de febrero de 2020;15(2):e0228034.
dc.relationJassat W, Ozougwu L, Munshi S, Mudara C, Vika C, Arendse T, et al. The intersection of age, sex, race and socio-economic status in COVID-19 hospital admissions and deaths in South Africa (with corrigendum). South Afr J Sci [Internet]. 31 de mayo de 2022 [citado24 de marzo de 2023];118(5/6). Disponible en: https://sajs.co.za/article/view/13323
dc.relationSze S, Pan D, Nevill CR, Gray LJ, Martin CA, Nazareth J, et al. Ethnicity and clinical outcomes in COVID-19: A systematic review and meta-analysis. EClinicalMedicine. 1 de diciembre de 2020;29-30:100630.
dc.relationKhanijahani A, Iezadi S, Gholipour K, Azami-Aghdash S, Naghibi D. A systematic review of racial/ethnic and socioeconomic disparities in COVID-19. Int J Equity Health. 24 de noviembre de 2021;20(1):248.
dc.relationCarethers J m. Insights into disparities observed with COVID-19. J Intern Med. 2021;289(4):463-73.
dc.relationKopel J, Perisetti A, Roghani A, Aziz M, Gajendran M, Goyal H. Racial and Gender-Based Differences in COVID-19. Front Public Health [Internet]. 2020 [citado 24 de marzo de 2023];8. Disponible en: https://www.frontiersin.org/articles/10.3389/ fpubh.2020.00418
dc.relationBaqui P, Bica I, Marra V, Ercole A, van der Schaar M. Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study. Lancet Glob Health. 1 de agosto de 2020;8(8):e1018-26.
dc.relationFigueroa JF, Wadhera RK, Mehtsun WT, Riley K, Phelan J, Jha AK. Association of race, ethnicity, and community-level factors with COVID-19 cases and deaths across U.S. counties. Healthcare. 1 de marzo de 2021;9(1):100495.
dc.relationLionello L, Stranges D, Karki T, Wiltshire E, Proietti C, Annunziato A, et al. Non-pharmaceutical interventions in response to the COVID-19 pandemic in 30 European countries: the ECDC–JRC Response Measures Database. Eurosurveillance. 13 de octubre de 2022;27(41):2101190.
dc.relationOroszi B, Juhász A, Nagy C, Horváth JK, McKee M, Ádány R. Unequal burden of COVID-19 in Hungary: a geographical and socioeconomic analysis of the second wave of the pandemic. BMJ Glob Health. septiembre de 2021;6(9):e006427.
dc.relationPaul A, Englert P, Varga M. Socio-economic disparities and COVID-19 in the USA. J Phys Complex. julio de 2021;2(3):035017.
dc.relationPrice-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med. 25 de junio de 2020;382(26):2534-43.
dc.relationRentsch CT, Kidwai-Khan F, Tate JP, Park LS, King JT, Skanderson M, et al. Covid-19 by Race and Ethnicity: A National Cohort Study of 6 Million United States Veterans. medRxiv. 17 de mayo de 2020;2020.05.12.20099135.
dc.relationMillett GA, Jones AT, Benkeser D, Baral S, Mercer L, Beyrer C, et al. Assessing differential impacts of COVID-19 on black communities. Ann Epidemiol. 1 de julio de 2020;47:37-44.
dc.relationLittle C, Alsen M, Barlow J, Naymagon L, Tremblay D, Genden E, et al. The Impact of Socioeconomic Status on the Clinical Outcomes of COVID-19; a Retrospective Cohort Study. J Community Health. 1 de agosto de 2021;46(4):794-802.
dc.relationBenítez MA, Velasco C, Sequeira AR, Henríquez J, Menezes FM, Paolucci F. Responses to COVID-19 in five Latin American countries. Health Policy Technol. 1 de diciembre de 2020;9(4):525-59.
dc.relationXavier DR, Lima e Silva E, Lara FA, e Silva GRR, Oliveira MF, Gurgel H, et al. Involvement of political and socio-economic factors in the spatial and temporal dynamics of COVID-19 outcomes in Brazil: A population-based study. Lancet Reg Health - Am. 1 de junio de 2022;10:100221.
dc.relationOrtiz-Prado E, Simbaña-Rivera K, Barreno LG, Diaz AM, Barreto A, Moyano C, et al. Epidemiological, socio-demographic and clinical features of the early phase of the COVID-19 epidemic in Ecuador. PLoS Negl Trop Dis. 4 de enero de 2021;15(1):e0008958.
dc.relationCifuentes MP, Rodriguez-Villamizar LA, Rojas-Botero ML, Alvarez-Moreno CA, Fernández-Niño JA. Socioeconomic inequalities associated with mortality for COVID-19 in Colombia: a cohort nationwide study. J Epidemiol Community Health. 1 de julio de 2021;75(7):610-5.
dc.relationBambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities. J Epidemiol Community Health. 1 de noviembre de 2020;74(11):964-8.
dc.relation. Jimenez-Silva, C., Rivero, R., Douglas, J., Bouckaert, R., Villabona-Arenas, C. J., Atkins, K. E., ... & Drummond, A. J. (2023). Genomic epidemiology of SARS-CoV-2 variants during the first two years of the pandemic in Colombia. Communications Medicine, 3(1), 97.
dc.relationWalsh KA, Jordan K, Clyne B, Rohde D, Drummond L, Byrne P, et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. Vol. 81, Journal of Infection. 2020.
dc.relationWu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Vol. 94, International Journal of Infectious Diseases. 2020.
dc.relationPeeling RW, Heymann DL, Teo YY, Garcia PJ. Diagnostics for COVID-19: moving from pandemic response to control. Vol. 399, The Lancet. 2022.
dc.relation. Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARSCoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Vol. 30, Reviews in Medical Virology. 2020.
dc.relationSheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic techniques for COVID-19 and new developments. Vol. 220, Talanta. 2020.
dc.relationJalandra R, Yadav AK, Verma D, Dalal N, Sharma M, Singh R, et al. Strategies and perspectives to develop SARS-CoV-2 detection methods and diagnostics. Vol. 129, Biomedicine and Pharmacotherapy. 2020.
dc.relationOishee MJ, Ali T, Jahan N, Khandker SS, Haq MA, Khondoker MU, et al. Covid-19 pandemic: Review of contemporary and forthcoming detection tools. Vol. 14, Infection and Drug Resistance. 2021.
dc.relationPan American Health Organization (PAHO). World Health Organization (WHO). 2020. Laboratory Guidelines for the Detection and Diagnosis of COVID-19 Virus Infection .
dc.relationBland J, Kavanaugh A, Hong LK, Perez O, Kadkol SS. A Multiplex One-Step RT-qPCR Protocol to Detect SARS-CoV-2 in NP/OP Swabs and Saliva. Curr Protoc. 2021;1(5).
dc.relationBerenger BM, Conly JM, Fonseca K, Hu J, Louie T, Schneider AR, et al. Saliva collected in universal transport media is an effective, simple and high-volume amenable method to detect SARS-CoV-2. Vol. 27, Clinical Microbiology and Infection. 2021.
dc.relationAzzi L, Carcano G, Gianfagna F, Grossi P, Gasperina DD, Genoni A, et al. Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection. 2020;81(1).
dc.relationBarra GB, Rita THS, Mesquita PG, Jácomo RH, Nery LFA. Analytical sensitivity and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. Genes (Basel). 2020;11(10).
dc.relationBarat B, Das S, de Giorgi V, Henderson DK, Kopka S, Lau AF, et al. Pooled saliva specimens for SARS-CoV-2 testing. J Clin Microbiol. 2021;59(3).
dc.relationBabady NE, McMillen T, Jani K, Viale A, Robilotti E v., Aslam A, et al. Performance of Severe Acute Respiratory Syndrome Coronavirus 2 Real-Time RT-PCR Tests on Oral Rinses and Saliva Samples. Journal of Molecular Diagnostics. 2021;23(1).
dc.relationLiu R, Han H, Liu F, Lv Z, Wu K, Liu Y, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clinica Chimica Acta. 2020;505.
dc.relationYuan C, Zhu H, Yang Y, Cai X, Xiang F, Wu H, et al. Viral loads in throat and anal swabs in children infected with SARS-CoV-2. Emerg Microbes Infect. 2020;9(1).
dc.relationXu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARSCoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4).
dc.relation. Sit THC, Brackman CJ, Ip SM, Tam KWS, Law PYT, To EMW, et al. Infection of dogs with SARS-CoV-2. Nature. 2020 Oct 29;586(7831):776–8.
dc.relationMedkour H, Catheland S, Boucraut-Baralon C, Laidoudi Y, Sereme Y, Pingret JL, et al. First evidence of human-to-dog transmission of SARS-CoV-2 B.1.160 variant in France. Transbound Emerg Dis. 2022 Jul 1;69(4):e823–30.
dc.relation. Sit THC, Brackman CJ, Ip SM, Tam KWS, Law PYT, To EMW, et al. Infection of dogs with SARS-CoV-2. Nature. 2020;586(7831).
dc.relationRivero R, Garay E, Botero Y, Serrano-Coll H, Gastelbondo B, Muñoz M, et al. Humanto-dog transmission of SARS-CoV-2, Colombia. Sci Rep. 2022 Dec 1;12(1).
dc.relationRojas MI, Giles SS, Little M, Baron R, Livingston I, Dagenais TRT, et al. Swabbing the urban environment–A pipeline for sampling and detection of SARS-CoV-2 from environmental reservoirs. Journal of Visualized Experiments. 2021;2021(170).
dc.relation. la Rosa G, Iaconelli M, Mancini P, Bonanno Ferraro G, Veneri C, Bonadonna L, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Science of the Total Environment. 2020;736.
dc.relationHata A, Hara-Yamamura H, Meuchi Y, Imai S, Honda R. Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Science of the Total Environment. 2021;758.
dc.relationMascuch SJ, Fakhretaha-Aval S, Bowman JC, Ma MTH, Thomas G, Bommarius B, et al. A blueprint for academic laboratories to produce SARS-cov-2 quantitative RT-PCR test kits. Journal of Biological Chemistry. 2020;295(46).
dc.relationRavi N, Cortade DL, Ng E, Wang SX. Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens Bioelectron. 2020;165.
dc.relationvan Kasteren PB, van der Veer B, van Den Brink S, Wijsman L, De jonge J, van den Brandt A, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 2020;128:104412.
dc.relationMousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection. 2020;
dc.relationRabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28(2):174–84.
dc.relationLi X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102–8.
dc.relationRivera Forero C, Yáñez Dukon LA, Herrera Khenayzir C, Arias JC, Niño Vargas J, Rodríguez Becerra P, et al. Integración de herramientas bioinformáticas y métodos en biología molecular para el diseño de un kit diagnóstico del COVID-19: un ejemplo de aprendizaje significativo. Revista Mutis [Internet]. 2019 Dec;9(2):62–80. Available from: https://revistas.utadeo.edu.co/index.php/mutis/article/view/1599
dc.relationRokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARSCoV-2 during an outbreak in Iran: comparison with SARS and MERS. Rev Med Virol. 2020;30(3):e2107.
dc.relationAhn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol. 2020;30(3):313–24.
dc.relationHan Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: A brief perspective from the front line. Journal of Infection. 2020;80(4):373–7.
dc.relationChen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–23.
dc.relationNational Institute for Viral Disease Control and Prevention. Specifc primers and probes for detection of 2019 novel coronavirus. 2020.
dc.relationVogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, et al. Analytical sensitivity and efficiency comparisons of SARS-COV-2 qRT-PCR assays. medRxiv. 2020;
dc.relationLeuzinger K, Osthoff M, Dräger S, Pargger H, Siegemund M, Bassetti S, et al. Comparing immunoassays for sars-cov-2 antibody detection in patients with and without laboratory-confirmed sars-cov-2 infection. Journal of Clinical Microbiology. 2021;59(12):1–14.
dc.relationMercado M, Malagón-Rojas J, Delgado G, Rubio VV, Galindo LM, Parra Barrera EL, et al. Evaluation of nine serological rapid tests for the detection of SARS-CoV-2. Revista Panamericana de Salud Publica/Pan American Journal of Public Health. 2020;44:1–9.
dc.relationWang D, Chen Y, Xiang S, Hu H, Zhan Y, Yu Y, et al. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Frontiers in Cellular and Infection Microbiology. 2023;12(January):1–26.
dc.relationChansaenroj J, Yorsaeng R, Posuwan N, Puenpa J, Sudhinaraset N, Chirathaworn C, et al. Detection of SARS-CoV-2-specific antibodies via rapid diagnostic immunoassays in COVID-19 patients. Virology Journal. 2021;18(1):1–7.
dc.relationAdamczuk J, Czupryna P, Dunaj-Małyszko J, Kruszewska E, Pancewicz S, Kamiński K, et al. Analysis of Clinical Course and Vaccination Influence on Serological Response in COVID-19 Convalescents. Microbiology Spectrum. 2022;10(2):1–8.
dc.relationKong WH, Zhao R, Zhou JB, Wang F, Kong DG, Sun J Bin, et al. Serologic Response to SARS-CoV-2 in COVID-19 Patients with Different Severity. Virologica Sinica. 2020;35(6):752–7.
dc.relation. MacMullan MA, Ibrayeva A, Trettner K, Deming L, Das S, Tran F, et al. ELISA detection of SARS-CoV-2 antibodies in saliva. Sci Rep. 2020;10(1).
dc.relation. MacMullan MA, Ibrayeva A, Trettner K, Deming L, Das S, Tran F, et al. ELISA detection of SARS-CoV-2 antibodies in saliva. Sci Rep. 2020;10(1).
dc.relationOliveira BA, de Oliveira LC, Sabino EC, Okay TS. SARS-CoV-2 and the COVID-19 disease: A mini review on diagnostic methods. Vol. 62, Revista do Instituto de Medicina Tropical de Sao Paulo. 2020.
dc.relationBeavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S, et al. Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. Journal of Clinical Virology. 2020;129.
dc.relationNordgren J, Sharma S, Olsson H, Jämtberg M, Falkeborn T, Svensson L, et al. SARSCoV-2 rapid antigen test: High sensitivity to detect infectious virus. Journal of Clinical Virology. 2021;140.
dc.relationYamayoshi S, Sakai-Tagawa Y, Koga M, Akasaka O, Nakachi I, Koh H, et al. Comparison of rapid antigen tests for covid-19. Viruses. 2020;12(12).
dc.relationDiao B, Wen K, Zhang J, Chen J, Han C, Chen Y, et al. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clinical Microbiology and Infection. 2021;27(2).
dc.relationvan Ogtrop ML, van de Laar TJW, Eggink D, Vanhommerig JW, van der Reijden WA. Comparison of the Performance of the PanBio COVID-19 Antigen Test in SARSCoV-2 B.1.1.7 (Alpha) Variants versus non-B.1.1.7 Variants. Microbiol Spectr. 2021;9(3).
dc.relationEshghifar N, Busheri A, Shrestha R, Beqaj S. Evaluation of analytical performance of seven rapid antigen detection kits for detection of SARS-CoV-2 virus. Int J Gen Med. 2021;14:435–40.
dc.relationMak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. Journal of Clinical Virology. 2020;129.
dc.relationTorres I, Poujois S, Albert E, Colomina J, Navarro D. Evaluation of a rapid antigen test (PanbioTM COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clinical Microbiology and Infection. 2021;27(4).
dc.relationManenti A, Molesti E, Maggetti M, Torelli A, Lapini G, Montomoli E. The theory and practice of the viral dose in neutralization assay: Insights on SARS-CoV-2 “doublethink” effect. J Virol Methods. 2021;297.
dc.relationLu L, Mok BWY, Chen LL, Chan JMC, Tsang OTY, Lam BHS, et al. Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant by Sera From BNT162b2 or CoronaVac Vaccine Recipients. Clinical Infectious Diseases. 2022 Aug 24;75(1):e822–6.
dc.relationFernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Vol. 54, Annals of Medicine. 2022.
dc.relationZannoli S, Morotti M, Denicolò A, Tassinari M, Chiesa C, Pierro A, et al. Diagnostics and laboratory techniques. In: Chikungunya and Zika Viruses: Global Emerging Health Threats. 2018.
dc.relationZou J, Xia H, Xie X, Kurhade C, Machado RRG, Weaver SC, et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nat Commun. 2022;13(1).
dc.relationDíaz FJ, Aguilar-Jiménez W, Flórez-Álvarez L, Valencia G, Laiton-Donato K, Franco-Muñoz C, et al. Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia. Biomédica. 2020 Oct 30;40(Supl. 2):148–58.
dc.relationPadoan A, Cosma C, Bonfante F, Rocca F della, Barbaro F, Santarossa C, et al. SARSCoV-2 neutralizing antibodies after one or two doses of Comirnaty (BNT162b2, BioNTech/Pfizer): Kinetics and comparison with chemiluminescent assays. Clinica Chimica Acta. 2021;523.
dc.relationPost N, Eddy D, Huntley C, van Schalkwyk MCI, Shrotri M, Leeman D, et al. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS One. 2020;15(12).
dc.relationDolscheid-Pommerich R, Bartok E, Renn M, Kümmerer BM, Schulte B, Schmithausen RM, et al. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J Med Virol. 2022;94(1).
dc.relationKlein S, Müller TG, Khalid D, Sonntag-Buck V, Heuser AM, Glass B, et al. SARS-CoV-2 RNA extraction using magnetic beads for rapid large-scale testing by RT-qPCR and RTLAMP. Viruses. 2020;12(8).
dc.relationHuang WE, Lim B, Hsu CC, Xiong D, Wu W, Yu Y, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4).
dc.relationYoo HM, Kim IH, Kim S. Nucleic acid testing of sars-cov-2. Vol. 22, International Journal of Molecular Sciences. 2021.
dc.relationDao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LPM, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(556).
dc.relationHu X, Deng Q, Li J, Chen J, Wang Z, Zhang X, et al. Development and Clinical Application of a Rapid and Sensitive Loop-Mediated Isothermal Amplification Test for SARSCoV-2 Infection. mSphere. 2020 Aug 26;5(4).
dc.relation. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science (1979). 2018;360(6387).
dc.relationChertow DS. Next-generation diagnostics with CRISPR. Science (1979). 2018;360(6387).
dc.relationChen JS, Ma E, Harrington LB, da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (1979). 2018;360(6387).
dc.relationZhang W, Liu K, Zhang P, Cheng W, Li L, Zhang F, et al. CRISPR-Based Approaches for Efficient and Accurate Detection of SARS-CoV-2. Vol. 52, Laboratory medicine. 2021.
dc.relationWang R, Qian C, Pang Y, Li M, Yang Y, Ma H, et al. opvCRISPR: One-pot visual RTLAMP-CRISPR platform for SARS-cov-2 detection. Biosens Bioelectron. 2021;172.
dc.relationMyhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science (1979). 2018;360(6387).
dc.relationJing R, Kudinha T, Zhou ML, Xiao M, Wang H, Yang WH, et al. Laboratory diagnosis of COVID-19 in China: A review of challenging cases and analysis. Vol. 54, Journal of Microbiology, Immunology and Infection. 2021.
dc.relationSelvam K, Najib MA, Khalid MF, Mohamad S, Palaz F, Ozsoz M, et al. Rt-lamp crisprcas12/13-based sars-cov-2 detection methods. Vol. 11, Diagnostics. 2021.
dc.relationKhan KA, Duceppe MO. Cross-reactivity and inclusivity analysis of CRISPR-based diagnostic assays of coronavirus SARS-CoV-2. PeerJ. 2021;9.
dc.relationAlcántara R, Peñaranda K, Mendoza-Rojas G, Nakamoto JA, Dueñas E, Alvarez D, et al. UnCovid: A versatile, low-cost, and open-source protocol for SARS-CoV-2 RNA detection. STAR Protoc. 2021;2(4).
dc.relationZhou H, Tsou JH, Chinthalapally M, Liu H, Jiang F. Detection and differentiation of SARS-CoV-2, influenza, and respiratory syncytial viruses by crispr. Diagnostics. 2021;11(5).
dc.relationWang Y, Zhang Y, Chen J, Wang M, Zhang T, Luo W, et al. Detection of SARS-CoV-2 and Its Mutated Variants via CRISPR-Cas13-Based Transcription Amplification. Anal Chem. 2021;93(7).
dc.relationLiang Y, Lin H, Zou L, Zhao J, Li B, Wang H, et al. CRISPR-Cas12a-Based Detection for the Major SARS-CoV-2 Variants of Concern. Microbiol Spectr. 2021;9(3).
dc.relationLevy SE, Boone BE. Next-generation sequencing strategies. Cold Spring Harb Perspect Med. 2019;9(7).
dc.relationLai D yun, Jiang H wei, Li Y, Zhang H nan, Tao S ce. SARS-CoV-2 proteome microarray for COVID-19 patient sera profiling. STAR Protoc. 2022;3(2).
dc.relationKim H, Chung SH, Kim HS, Kim HS, Song W, Hong KH, et al. Investigation of SARSCoV-2 lineages and mutations circulating in a university-affiliated hospital in South Korea analyzed using Oxford Nanopore MinION sequencing. Osong Public Health Res Perspect. 2022 Oct 1;13(5):360–9.
dc.relationGENCELL PHARMA GENÉTICA AVANZADA. www.gencellpharma.com. [cited 2022 Sep 25]. SECUENCIACIÓN DE PRÓXIMA GENERACIÓN NGS. Available from: https://gencellpharma.com/?r=%2Fwp-content%2Fuploads%2F2021%2F08%2FMGI_GencellPharma.pdf
dc.relationLang J, Zhu R, Sun X, Zhu S, Li T, Shi X, et al. Evaluation of the MGISEQ-2000 Sequencing Platform for Illumina Target Capture Sequencing Libraries. Front Genet. 2021;12.
dc.relationMcGinn S, Gut IG. DNA sequencing–spanning the generations. N Biotechnol. 2013;30(4).
dc.relationKilic T, Weissleder R, Lee H. Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges. Vol. 23, iScience. 2020.
dc.relationKucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4).
dc.relationKucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4).
dc.relationWikramaratna PS, Paton RS, Ghafari M, Lourenço J. Estimating the false-negative test probability of SARSCoV- 2 by RT-PCR. Eurosurveillance. 2020;25(50).
dc.relationSethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. Vol. 323, JAMA–Journal of the American Medical Association. 2020.
dc.relationGuo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical Infectious Diseases. 2020;71(15).
dc.relationPlotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nature Reviews Microbiology 2011 9:12 [Internet]. 2011 Oct 3 [cited 2022 Aug 12];9(12):889–93. Available from: https://www.nature.com/articles/nrmicro2668
dc.relationNavas-Martín S, Weiss SR. Coronavirus replication and pathogenesis: Implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J Neurovirol [Internet]. 2004 Apr [cited 2022 Aug 6];10(2):75. Available from: /pmc/articles/PMC7095027/
dc.relationLu L, Manopo I, Leung BP, Chng HH, Ling AE, Chee LL, et al. Immunological Characterization of the Spike Protein of the Severe Acute Respiratory Syndrome Coronavirus. J Clin Microbiol [Internet]. 2004 Apr [cited 2022 Aug 6];42(4):1570. Available from: / pmc/articles/PMC387621/
dc.relationLin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, et al. Safety and immunogenicity from a Phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther. 2007;12(7):1107–13.
dc.relationOur World in Data. Coronavirus (COVID-19) Vaccinations–Our World in Data [Internet]. [cited 2022 Aug 6]. Available from: https://ourworldindata.org/covid-vaccinations?country=OWID_WRL
dc.relationCOVID-19 Vaccine Tracker. Rastreador de vacunas COVID19 [Internet]. [cited 2022 Aug 13]. Available from: https://covid19.trackvaccines.org/
dc.relationIzda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clinical Immunology. 2021 Jan 1;222:108634.
dc.relationKrammer F. SARS-CoV-2 vaccines in development. Nature 2020 586:7830 [Internet]. 2020 Sep 23 [cited 2022 Aug 12];586(7830):516–27. Available from: https://www.nature. com/articles/s41586-020-2798-3
dc.relationMohammed I, Nauman A, Paul P, Ganesan S, Chen KH, Jalil SMS, et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum Vaccin Immunother [Internet]. 2022 [cited 2022 Aug 12];18(1). Available from: https://www.tandfonline.com/doi/abs/10.1080/216455 15.2022.2027160
dc.relationMousa M, Albreiki M, Alshehhi F, AlShamsi S, Marzouqi N al, Alawadi T, et al. Similar effectiveness of the inactivated vaccine BBIBP-CorV (Sinopharm) and the mRNA vaccine BNT162b2 (Pfizer-BioNTech) against COVID-19 related hospitalizations during the Delta outbreak in the United Arab Emirates. J Travel Med [Internet]. 2022 Mar 31 [cited 2022 Aug 5]; Available from: https://pubmed.ncbi.nlm.nih.gov/35244687/
dc.relationBehera P, Singh AK, Subba SH, Mc A, Sahu DP, Chandanshive PD, et al. Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India. Hum Vaccin Immunother [Internet]. 2022 [cited 2022 Aug 7];18(1). Available from: / pmc/articles/PMC9009960/
dc.relationMendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines 2021 6:1 [Internet]. 2021 Aug 5 [cited 2022 Aug 13];6(1):1–14. Available from: https://www.nature.com/articles/s41541-021-00356-x
dc.relationKeech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med [Internet]. 2020 Dec 10 [cited 2022 Aug 13];383(24):2320–32. Available from: /pmc/articles/ PMC7494251/
dc.relationValdes-Balbin Y, Santana-Mederos D, Quintero L, Fernández S, Rodriguez L, Sanchez Ramirez B, et al. SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chem Biol [Internet]. 2021 Jul 16 [cited 2022 Sep 5];16(7):1223–33. Available from: https://pubs.acs.org/doi/abs/10.1021/ acschembio.1c00272
dc.relationImai N, Hogan AB, Williams L, Cori A, Mangal TD, Winskill P, et al. Interpreting estimates of coronavirus disease 2019 (COVID-19) vaccine efficacy and effectiveness to inform simulation studies of vaccine impact: a systematic review. Wellcome Open Research 2021 6:185 [Internet]. 2021 Jul 19 [cited 2022 Aug 6];6:185. Available from: https://wellcomeopenresearch.org/articles/6-185
dc.relationLipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nature Reviews Immunology 2021 22:1 [Internet]. 2021 Dec 7 [cited 2023 Feb 4];22(1):57–65. Available from: https://www.nature.com/articles/s41577-021-00662-4
dc.relationTartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet [Internet]. 2021 Oct 16 [cited 2022 Aug 4];398(10309):1407–16. Available from: http://www.thelancet.com/ article/S0140673621021838/fulltext
dc.relationNasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nature Microbiology 2022 7:3 [Internet]. 2022 Feb 7 [cited 2022 Aug 5];7(3):379–85. Available from: https://www.nature.com/articles/ s41564-021-01053-0
dc.relationAndrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. New England Journal of Medicine [Internet]. 2022 Apr 21 [cited 2022 Aug 5];386(16):1532–46. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2119451
dc.relationBernal JL, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med [Internet]. 2021 Aug 12 [cited 2022 Aug 4];385(7):585–94. Available from: /pmc/articles/ PMC8314739/
dc.relation. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. New England Journal of Medicine [Internet]. 2022 Mar 3 [cited 2022 Aug 5];386(9):847–60. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2117608
dc.relationGray G, Collie S, Goga A, Garrett N, Champion J, Seocharan I, et al. Effectiveness of Ad26.COV2.S and BNT162b2 Vaccines against Omicron Variant in South Africa. New England Journal of Medicine [Internet]. 2022 Jun 9 [cited 2022 Aug 5];386(23):2243–5. Available from: https://www.nejm.org/doi/full/10.1056/NEJMc2202061
dc.relationChemaitelly H, Yassine HM, Benslimane FM, al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med [Internet]. 2021 Sep 1 [cited 2022 Aug 4];27(9):1614–21. Available from: https://pubmed.ncbi.nlm.nih.gov/34244681/
dc.relationVokó Z, Kiss Z, Surján G, Surján O, Barcza Z, Pályi B, et al. Nationwide effectiveness of five SARS-CoV-2 vaccines in Hungary—the HUN-VE study. Clinical Microbiology and Infection. 2022 Mar 1;28(3):398–404.
dc.relation. Cerqueira-Silva T, Andrews JR, Boaventura VS, Ranzani OT, de Araújo Oliveira V, Paixão ES, et al. Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26. COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study. Lancet Infect Dis [Internet]. 2022 Jun 1 [cited 2022 Aug 5];22(6):791– 801. Available from: http://www.thelancet.com/article/S1473309922001402/fulltext
dc.relationLi XN, Huang Y, Wang W, Jing QL, Zhang CH, Qin PZ, et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: a test-negative case–control real-world study. https://doi.org/101080/2222175120211969291 [Internet]. 2021 [cited 2022 Aug 5];10(1):1751–9. Available from: https://www.tandfonline. com/doi/abs/10.1080/22221751.2021.1969291
dc.relationJara A, Undurraga EA, Zubizarreta JR, González C, Acevedo J, Pizarro A, et al. Effectiveness of CoronaVac in children 3–5 years of age during the SARS-CoV-2 Omicron outbreak in Chile. Nature Medicine 2022 28:7 [Internet]. 2022 May 23 [cited 2022 Aug 22];28(7):1377–80. Available from: https://www.nature.com/articles/s41591-022- 01874-4
dc.relationDesai D, Khan AR, Soneja M, Mittal A, Naik S, Kodan P, et al. Effectiveness of an inactivated virus-based SARS-CoV-2 vaccine, BBV152, in India: a test-negative, case-control study. Lancet Infect Dis. 2022 Mar 1;22(3):349–56.
dc.relationMalhotra S, Mani K, Lodha R, Bakhshi S, Mathur VP, Gupta P, et al. COVID-19 infection, and reinfection, and vaccine effectiveness against symptomatic infection among health care workers in the setting of omicron variant transmission in New Delhi, India. The Lancet Regional Health–Southeast Asia [Internet]. 2022 Aug 1 [cited 2022 Aug 7];3:100023. Available from: http://www.thelancet.com/article/S2772368222000282/ fulltext
dc.relationNabirova D, Horth R, Smagul M, Nukenova G, Yesmagambetova A, Singer D, et al. Effectiveness of Sputnik V, Qazvac, Hayat-Vax, and Coronavac Vaccines in Preventing COVID-19 in Kazakhstan, February-September 2021. SSRN Electronic Journal [Internet]. 2022 Apr 27 [cited 2022 Aug 6]; Available from: https://papers.ssrn.com/ abstract=4077889
dc.relationShkoda AS, Gushchin VA, Ogarkova DA, Stavitskaya S v., Orlova OE, Kuznetsova NA, et al. Sputnik V Effectiveness against Hospitalization with COVID-19 during Omicron Dominance. Vaccines 2022, Vol 10, Page 938 [Internet]. 2022 Jun 13 [cited 2022 Aug 6];10(6):938. Available from: https://www.mdpi.com/2076-393X/10/6/938/htm
dc.relationShinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. Efficacy of NVXCoV2373 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine [Internet]. 2021 May 20 [cited 2022 Aug 5];384(20):1899–909. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2103055
dc.relationMás-Bermejo PI, Dickinson-Meneses FO, Almenares-Rodríguez K, Sánchez-Valdés L, Guinovart-Díaz R, Vidal-Ledo M, et al. Cuban Abdala vaccine: Effectiveness in preventing severe disease and death from COVID-19 in Havana, Cuba; A cohort study. Lancet Regional Health–Americas [Internet]. 2022 Dec 1 [cited 2023 Feb 4];16. Available from: http://www.thelancet.com/article/S2667193X22001831/fulltext
dc.relationDeming ME, Lyke KE. A ‘mix and match’ approach to SARS-CoV-2 vaccination. Nature Medicine 2021 27:9 [Internet]. 2021 Jul 26 [cited 2022 Sep 7];27(9):1510–1. Available from: https://www.nature.com/articles/s41591-021-01463-x
dc.relationAtmar RL, Lyke KE, Deming ME, Jackson LA, Branche AR, el Sahly HM, et al. Homologous and Heterologous Covid-19 Booster Vaccinations. New England Journal of Medicine [Internet]. 2022 Mar 17 [cited 2022 Aug 22];386(11):1046–57. Available from: https://www.nejm.org/doi/10.1056/NEJMoa2116414
dc.relationPérez-Then E, Lucas C, Monteiro VS, Miric M, Brache V, Cochon L, et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nature Medicine 2022 28:3 [Internet]. 2022 Jan 20 [cited 2022 Aug 14];28(3):481–5. Available from: https://www.nature.com/ articles/s41591-022-01705-6
dc.relationAi J, Zhang H, Zhang Q, Zhang Y, Lin K, Fu Z, et al. Recombinant protein subunit vaccine booster following two-dose inactivated vaccines dramatically enhanced anti-RBD responses and neutralizing titers against SARS-CoV-2 and Variants of Concern. Cell Research 2021 32:1 [Internet]. 2021 Nov 23 [cited 2022 Aug 14];32(1):103–6. Available from: https://www.nature.com/articles/s41422-021-00590-x
dc.relationZhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nature Communications 2022 13:1 [Internet]. 2022 Aug 24 [cited 2022 Sep 4];13(1):1–12. Available from: https://www.nature.com/articles/s41467-022-32665-7
dc.relationRodríguez Y, Rojas M, Beltrán S, Polo F, Camacho-Domínguez L, Morales SD, et al. Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J Autoimmun [Internet]. 2022 Oct 1 [cited 2022 Sep 4];132:102898. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0896841122001068
dc.relationKaulen LD, Doubrovinskaia S, Mooshage C, Jordan B, Purrucker J, Haubner C, et al. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series. Eur J Neurol [Internet]. 2022 Feb 1 [cited 2023 Feb 4];29(2):555–63. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ene.15147
dc.relationDíaz A, Serrano-Coll H, Botero Y, Calderón A, Arteta-Cueto A, Gastelbondo B, et al. Immunogenicity and safety of a RBD vaccine against SARS-CoV-2 in a murine model. Travel Med Infect Dis [Internet]. 2022 Sep 1 [cited 2023 Oct 21];49. Available from: https://pubmed.ncbi.nlm.nih.gov/35963556/
dc.relationWoolhouse MEJ, Gowtage-Sequeria S. Host range and emerging and reemerging pathogens. Emerg Infect Dis. 2005;11(12):1842–7.
dc.relationZhong N, Zheng B, Li Y, Ponn X, Chan K, Li P. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003;362:1353–1358.
dc.relationCui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.
dc.relationHemida, M. G., D. K. W. Chu, R. A. P. M. Perera, R. L. W. Ko, R. T. Y. So, B. C. Y. Ng, S. M. S. Chan, S. Chu, A. A. Alnaeem, M. A. Alhammadi, R. J. Webby, L. L. M. Poon, U. B. R. Balasuriya, and M. Peiris. 2017. “Coronavirus Infections in Horses in Saudi Arabia and Oman.” Transboundary and Emerging Diseases 64(6):2093–2103.
dc.relationZhong N, Zheng B, Li Y, Ponn X, Chan K, Li P. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003;362:1353–1358.
dc.relationMora-Díaz JC, Piñeyro PE, Houston E, Zimmerman J, Giménez-Lirola LG. Porcine hemagglutinating encephalomyelitis virus: A review. Front Vet Sci. 2019;6(FEB):1–12.
dc.relationJung K, Saif L, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020;1–13.
dc.relationJung K, Saif L, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020;1–13.
dc.relationPerlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439–50.
dc.relationWeiss SR, Navas S. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–64.
dc.relationDecaro N, Buonavoglia C. An update on canine coronaviruses: Viral evolution andpathobiology. Vet Microbiol. 2008;132.
dc.relationPusterla, N., R. Vin, C. M. Leutenegger, L. D. Mittel, and T. J. Divers. 2018. “Enteric Coronavirus Infection in Adult Horses.” The Veterinary Jornal 231:13–18.
dc.relationGuy, J. S., J. J. Breslin, B. Breuhaus, S. Vivrette, and L. G. Smith. 2000. “Characterization of a Coronavirus Isolated from a Diarrheic Foal.” Journal of Clinical Microbiology 38(12):4523–26.
dc.relationMihindukulasuriya KA, Wu G, St. Leger J, Nordhausen RW, Wang D. Identification of a Novel Coronavirus from a Beluga Whale by Using a Panviral Microarray. J Virol. 2008;82(10):5084–8.
dc.relationSnijder, Eric J., Peter J. Bredenbeek, Jessika C. Dobbe, Volker Thiel, John Ziebuhr, Leo L. M. Poon, Yi Guan, Mikhail Rozanov, Willy J. M. Spaan, and Alexander E. Gorbalenya.2003. “Unique and Conserved Features of Genome and Proteome of SARS-Coronavirus, an Early Split-off from the Coronavirus Group 2 Lineage.” Journal of Molecular Biology 331(5):991–1004.
dc.relationLin SY, Chen HW. Infectious bronchitis virus variants: Molecular analysis and pathogenicity investigation. Int J Mol Sci. 2017;18(10):1–17.
dc.relationWeiss SR, Navas S. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–64.
dc.relationRomano J, Velázquez A, Olguín F. Relaciones antigénicas del virus de la bronquitis infecciosa de las aves con el de la gastroenteritis transmisible de los cerdos. Vet Mex OA. 2020;7(3):1–13.
dc.relationAitken C. Clinical Virology, 3rd Edition Clinical Virology, 3rd Edition Edited by D. D. Richman , R. J. Whitley , and F. G. Hayden Washington, DC: ASM Press, 2009. 1408 pp, Illustrated. $259.59 (hardcover). Clin Infect Dis. 2010;50(12):1692–1692.
dc.relationKorner, R., M. Mohamed, M. Alcanzar, and E. Mahabir. 2020. “Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Undertand SARSCoV-2.” Viruses 12(880):1–26.
dc.relationDurães-Carvalho, Ricardo, Leonardo C. Caserta, Ana C. S. Barnabé, Matheus C. Martini, Helena L. Ferreira, Paulo A. N. Felippe, Márcia B. Santos, and Clarice W. Arns. 2015. “Coronaviruses Detected in Brazilian Wild Birds Reveal Close Evolutionary Relationships with Beta- and Deltacoronaviruses Isolated From Mammals.” Journal of Molecular Evolution 81(1–2):21–23.
dc.relationChamings, Anthony, Tiffanie M. Nelson, Jessy Vibin, Michelle Wille, Marcel Klaassen, and Soren Alexandersen. 2018. “Detection and Characterisation of Coronaviruses in Migratory and Non-Migratory Australian Wild Birds.” Scientific Reports 8(1).
dc.relationChu, D., C. Leung, M. Gilbert, P. Joyner, E. Ng, T. Tse, and Y. Guan. 2011. “Avian Coronavirus in Wild Aquatic Birds.Pdf.” Journal of Virology 85(23):12815–20.
dc.relationTorres, C. A., V. Listorti, C. Lupini, G. Franzo, M. Drigo, E. Catelli, and P. E. Brand. 2017. “Gamma and Deltacoronaviruses in Quail and Pheasants from Northern Italy.” Molecular and cellular biology 96:717–22.
dc.relationMousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020;
dc.relationWoo, P. C. Y., S. K. P. Lau, C. S. F. Lam, C. C. Y. Lau, A. K. L. Tsang, J. H. N. Lau, R. Bai, J. L. L. Teng, C. C. C. Tsang, M. Wang, B. J. Zheng, K. H. Chan, and K. Y. Yuen. 2012. “Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi.” Journal of Virology 86(7):3995–4008.
dc.relationAmer HM. Bovine-like coronaviruses in domestic and wild ruminants. Anim Heal Res Rev. 2019;19:133–124.
dc.relationFernandes A, Brandão PE, dos Santos M, de Souza M, da Silva TG, da Silva V, et al. Genetic diversity of BCoV in Brazilian cattle herds. Vet Med Sci. 2018;4(3):183–9.
dc.relationSokani Sánchez, Pablo Colunga, Gabriela Aguilar, Carlos A. López, Juan Mosqueda.2022. La fauna silvestre y la COVID-19. ¿y ahora qué? Bioagrociencias 15 (1S).
dc.relationYesica Botero, Juan David Ramírez, Héctor Serrano-Coll, Ader Aleman, Nathalia Ballesteros, Caty Martinez, Marina Muñoz, Alfonso Calderon, Luz H Patiño, Camilo Guzman, Sergio Castañeda, Yonairo Hererra, Salim Mattar.2022 First report and genome sequencing of SARS-CoV-2 in a cat (Felis catus) in Colombia. Mem Inst Oswaldo Cruz. 117: e210375.
dc.relationRivero R, Garay E, Botero Y, Serrano-Coll H, Gastelbondo B, Muñoz M, Ballesteros N, Castañeda S, Patiño L, Ramirez JD, Calderon A, Guzman C, Martinez-Bravo C, Aleman A, Arrieta G, Mattar S. 2022. Human-to-dog transmission of SARS-CoV-2, Colombia. Sci Rep 12;12(1):7880. doi: 10.1038/s41598-022-11847-9.
dc.relationPaternina E, Garcia A, Tique-Salleg V, Alvarez G, Miranda J, Mattar-Velilla S. 2022. Circulación de SARS-CoV-2 en animales de vida silvestre en zoológicos y centros de atención y valoración del Caribe colombiano. Infectio 26(4) suplemento 1.
dc.relationZhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):1–14.
dc.relationCorman V, Ithete N, Richards L, Schoeman M, Preiser W, Drosten C, et al. Rooting the Phylogenetic Tree of Middle East Respiratory Syndrome Coronavirus by Characterization of a Conspecific Virus from an African Bat. J Virol. 2014;88(19):11297–303.
dc.relationJi W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92(4):433–40.
dc.relationLiu Z, Xiao X, Wei X, Li J, Yang J, Tan H, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol [Internet]. 2020;92(6):595–601. Available from: http://dx.doi. org/10.1002/jmv.25726
dc.relationLiu P, Chen W, Chen JP. Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (manis javanica). Viruses. 2019;11(11).
dc.relation. Solari S, Martínez-Arias V. Cambios recientes en la sistemática y taxonomía de murciélagos Neotropicales (Mammalia: Chiroptera). Therya. 2005;5(1):167–96.
dc.relationRamírez-Chaves, H., A. F. Suárez-Castro, Sociedad Colombiana de Mastozoología, D. Zurc, D. C. Concha-Osbahr, F. Trujillo, E. A. Noguera-Urbano, G. E. Pantoja, M. Rodríguez-Posada, J. F. González-Maya, J. Pérez-Torres, H. Mantilla-Meluk, C. López, A. Velásquez, y D. Zárrate-Charry. 2018. Mamíferos de Colombia. Versión 1.5. Sociedad Colombiana de Mastozoología (Checklist). http://doi.org/10.15472/kl1whs
dc.relationSolari S, Gómez-Ruiz D, Patiño-Castillo E, Villada-Cadavid T, Carolina López M. Bat diversity of the Serranía de San Lucas (Bolívar and Antioquia), Northern Colombia. Therya. 2020;11(1):69–78.
dc.relationWood JLN, Leach M, Waldman L, MacGregor H, Fooks AR, Jones KE, et al. A framework for the study of zoonotic disease emergence and its drivers: Spillover of bat pathogens as a case study. Philos Trans R Soc B Biol Sci. 2012;367(1604):2881–92.
dc.relation. Brook CE, Dobson AP. Bats as “special” reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015;23(3):172–80.
dc.relationLuis AD, O’Shea TJ, Hayman DTS, Wood JLN, Cunningham AA, Gilbert AT, et al. Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol Lett. 2015;18(11):1153–62.
dc.relationO’Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTS, Luis AD, et al. Bat flight and zoonotic viruses. Emerg Infect Dis. 2014;20(5):741–5.
dc.relationMunshi-south J, Wilkinson GS. Bats and birds : Exceptional longevity despite high metabolic rates. 2010;9:12–9.
dc.relationBanerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11(1):7–9.
dc.relationTao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. J Virol. 2017;91(5).
dc.relationZhao J, Cui W, Tian BP. The Potential Intermediate Hosts for SARS-CoV-2. Front Microbiol. 2020;11(September):1–11.
dc.relationHu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W, Li B, et al. 新发现11条sars Strains, 有一个simplot图作参考. PLOS Pathog [Internet]. 2017;13(11):1–27. Available from: https://doi.org/10.1371/journal.ppat.1006698
dc.relationGheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;1456–74.
dc.relationSharun K, Tiwari R, Patel SK, Karthik K, Iqbal Yatoo M, Malik YS, et al. Coronavirus disease 2019 (COVID-19) in domestic animals and wildlife: advances and prospects in the development of animal models for vaccine and therapeutic research. Vol. 16, Human Vaccines and Immunotherapeutics. Bellwether Publishing, Ltd.; 2020. p. 3043–54.
dc.relationWAIS-OIE, 2023. Disponible en: https://www.woah.org/oie-wahis, consultado 20 octubre 2023.
dc.relationOude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Jan Molenaar R, Munger E, Molenkamp R, et al. Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms Affiliations. bioRxiv [Internet]. 2020; Available from: https://doi.org/10.1101/2020.09.01.277152
dc.relation. McAloose D, Laverack M, Wang L, Killian ML, Caserta LC, Yuan F, et al. From people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. bioRxiv. 2020;11(5):1–13.
dc.relationSila T, Sunghan J, Laochareonsuk W, Surasombatpattana S, Kongkamol C, Ingviya T, et al. Suspected Cat-to-Human Transmission of SARS-CoV-2, Thailand, July-September 2021. Emerg Infect Dis. 2022;28(7):1485-8.
dc.relationZhou P, Shi ZL. SARS-CoV-2 spillover events Spillover from mink to humans highlights SARS-CoV-2 transmission routes from animals. Nat Rev Microbiol. 2021;371(6525):120– 2
dc.relationVan Dorp L, Tan CCS, Lam SD, Richard D, Owen C, Berchtold D, et al. Recurrent mutations in SARS-CoV-2 genomes isolated from mink point to rapid host-adaptation. bioRxiv. bioRxiv; 2020.
dc.relationKoopmans M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. 2020; Available from: https://www.who.int/publications/m/item/who-convened
dc.relationKoopmans M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. 2020; Available from: https://www.who.int/publications/m/item/who-convened
dc.relationSharun K, Tiwari R, Natesan S, Dhama K. SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the One Health approach during the ongoing COVID-19 pandemic. Vet Q. 2021 Jan 1;41(1):50–60.
dc.relationOreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Van Der Honing RWH, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance [Internet]. 2020;25(23):1–7. Available from: http://dx.doi. org/10.2807/1560-7917.ES.2020.25.23.2001005
dc.relationMunnink BBO, Meulder D De, Amerongen G Van, Brand J Van Den, Okba NMA, Schipper D, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. 2020;1015(May):1012–5.
dc.relationShi J, Wen Z, Zhong G, Yang H, Wang C, Liu R, et al. Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2. bioRxiv. 2020;1–23.
dc.relationKiros M, Andualem H, Kiros T, Hailemichael W, Getu S, Geteneh A, et al. COVID-19 pandemic: Current knowledge about the role of pets and other animals in disease transmission. Vol. 17, Virology Journal. BioMed Central Ltd.; 2020.
dc.relationA Scientific Assessment with Key Messages for Policy-Makers A Special Volume of UNEP’s Frontiers Report Series Preventing the next pandemic preventing the next pandemic Zoonotic diseases and how to break the chain of transmission [Internet]. 2020. Available from: https://www.un.org/Depts/Cartographic/
dc.relationSantos R, Monteiro S. Epidemiology, control, and prevention of emerging zoonotic viruses. In: Viruses in Food and Water: Risks, Surveillance and Control. Elsevier Ltd.; 2013. p. 442–57.
dc.relationBelay ED, Kile JC, Hall AJ, Barton-Behravesh C, Parsons MB, Salyer S, et al. Zoonotic disease programs for enhancing global health security. Emerging Infectious Diseases. 2017 Dec 1;23: S65–70.
dc.relationKaufer AM, Theis T, Lau KA, Gray JL, Rawlinson WD. Laboratory biosafety measures involving SARS-CoV-2 and the classification as a Risk Group 3 biological agent. Pathology 2020 December 2020;52(7):790-795.
dc.relationAli Al Shehri S, Al-Sulaiman A, Azmi S, Alshehri SS. Bio-safety and bio-security: A major global concern for ongoing COVID-19 pandemic. Saudi Journal of Biological Sciences 2021 Available online 30 August 2021.
dc.relationPetersen E, Wasserman S, Lee S, Go U, Holmes AH, Al-Abri S, et al. COVID-19–We urgently need to start developing an exit strategy. International Journal of Infectious Diseases 2020 July 2020;96:233-239.
dc.relationWorld Health Organization. Laboratory biosafety manual [Internet]. 4th ed. World Health Organization, editor. 2020. Disponible en: https://www.who.int/publications/i/ item/9789240011311
dc.relationLin K, Liu M, Ma H, Pan S, Qiao H, Gao H. Laboratory biosafety emergency management for SARS-CoV-2. Journal of Biosafety and Biosecurity 2020 December 2020;2(2):99-101.
dc.relationJanson DJ, Clift BC, Dhokia V. PPE fit of healthcare workers during the COVID-19 pandemic. Appl Ergon 2021 Available online 15 October 2021:103610.
dc.relationElizarrarás-Rivas Jesús, Cruz-Ruiz Néstor Gabriel, Elizarrarás-Cruz Jesús Daniel, Robles-Rodríguez Perla Violeta, Vásquez-Garzón Verónica Rocío, Herrera-Lugo Kena Guadalupe et al. Medidas de protección para el personal de salud durante la pandemia por COVID-19. Rev. mex. anestesiol. [revista en la Internet]. 2020 Dic; 43(4):315-324. DEpub 18-Oct-2021. https://doi.org/10.35366/94945.
dc.relationFlynn MA, Keller B, DeLaney SC. Promotion of alternative-sized personal protective equipment. J Safety Res 2017 Dec;63:43-46.
dc.relation(Lim CY, Bohn MK, Lippi G, Ferrari M, Loh TP, Yuen K, et al. Staff rostering, split team arrangement, social distancing (physical distancing) and use of personal protective equipment to minimize risk of workplace transmission during the COVID-19 pandemic: A simulation study. Clin Biochem 2020 December 2020;86:15-22.
dc.relationLoh TP, Horvath AR, Wang CB, Koch D, Lippi G, Mancini N, et al. Laboratory practices to mitigate biohazard risks during the COVID-19 outbreak: an IFCC global survey. Clin Chem Lab Med 2020 Jun 4;58(9):1433-1440.
dc.relationOMS. Manual de bioseguridad en el laboratorio. Tercera ed. Ginebra: OMS; 2005.
dc.relationCottin I, Vallery G, Dahak S. Uso situado de los epp (equipos de protección personal) frente al riesgo biológico: ejemplo de un laboratorio seguro de contención de nivel 3. Laboreal 2016;12(2):56-74.
dc.relationMitchell R, Roth V, Gravel D, Astrakianakis G, Bryce E, Forgie S, et al. Are health care workers protected? An observational study of selection and removal of personal protective equipment in Canadian acute care hospitals. Am J Infect Control 2013 March 2013;41(3):240-244.
dc.relationBarratt R, Wyer M, Hor SY, Gilbert GL. Medical interns’ reflections on their training in use of personal protective equipment. BMC Med Educ 2020 Sep 23;20(1):328-020- 02238-7.
dc.relationJohn A, Tomas ME, Hari A, Wilson BM, Donskey CJ. Do medical students receive training in correct use of personal protective equipment? 2017 01/01;22(1):1264125.
dc.relation(16) ministerio de salud y protección social. Resolución 000666 DE 2020. 2020.
dc.relationOrganización Mundial de la Salud 2020. Uso racional del equipo de protección personal frente a la COVID-19 y aspectos que considerar en situaciones de escasez graves Orientaciones provisionales. available at: https://apps.who.int/iris/ bitstream/handle/10665/331810/WHO-2019-nCoV-IPC_PPE_use-2020.3-spa. pdf?sequence=1&isAllowed=y
dc.relationOMS. Equipo de protección personal. 2020; Available at: https://www.who.int/csr/ resources/publications/epp-oms.pdf?ua=1.
dc.relationSharma HB, Vanapalli KR, Cheela VS, Ranjan VP, Jaglan AK, Dubey B, et al. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour Conserv Recycling 2020 November 2020;162:105052.
dc.relationOlatayo KI, Mativenga PT, Marnewick AL. COVID-19 PPE plastic material flows and waste management: Quantification and implications for South Africa. Sci Total Environ 2021 10 October 2021;790:148190.
dc.relationHaque MdS, Sharif S, Masnoon A, Rashid E. SARS-CoV-2 pandemic-induced PPE and single-use plastic waste generation scenario. Waste Management & Research. 2021;39(1_ suppl):3-17.
dc.relationSingh E, Kumar A, Mishra R, Kumar S. Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere 2022 February 2022;288:132451.
dc.relationBasray R, Malik A, Waqar W, Chaudhry A, Wasif Malik M, Ali Khan M, et al. Impact of environmental factors on COVID-19 cases and mortalities in major cities of Pakistan. Journal of Biosafety and Biosecurity 2021 June 2021;3(1):10-16.
dc.relationSingh V, Mishra V. Environmental impacts of coronavirus disease 2019 (COVID-19). Bioresource Technology Reports 2021 September 2021;15:100744.
dc.relationSaxena P, Pradhan IP, Kumar D. Redefining bio medical waste management during COVID- 19 in india: A way forward. Materials Today: Proceedings 2021 Available online 12 October 2021.
dc.relationSharma HB, Vanapalli KR, Samal B, Cheela VRS, Dubey BK, Bhattacharya J. Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery. Sci Total Environ 2021 15 December 2021;800:149605.
dc.relationhttps://www.youtube.com/watch?v=_zrMmvshnVk
dc.relationhttps://www.youtube.com/watch?v=_uEgrRd_YIM
dc.relationCómo colocar correctamente los guantes. https://www.youtube.com/watch?v=dS0CL-nKDLs
dc.relationCómo retirar correctamente los guantes. https://www.youtube.com/watch?v=4rGQcw0ewpo
dc.relationLecturas sugeridas https://apps.who.int/iris/bitstream/handle/10665/331846/WHO-2019-nCoV-IPC_ WASH-2020.3-eng.pdf https://www.degruyter.com/document/doi/10.1515/cclm-2020-0711/html https://apps.who.int/iris/bitstream/handle/10665/337956/9789240011311-eng.pdf?sequence=1&isAllowed=y
dc.relationDe Nevers N. Air pollution control engineering. Waveland press; 2010.
dc.relationGurjar BR, Molina LT, Ojha CSP. Air pollution: health and environmental impacts. CRC press; 2010.
dc.relationRajak R, Chattopadhyay A. Short and Long Term Exposure to Ambient Air Pollution and Impact on Health in India: A Systematic Review. Int J Environ Health Res. 2020;30(6):593-617.
dc.relationAmable-Álvarez I, Méndez-Martínez J, Bello-Rodríguez BM, Benítez-Fuentes B, Escobar-Blanco LM, Zamora-Monzón R. Influencia de los contaminantes atmosféricos sobre la salud. Rev Médica Electrónica. 2017;39(5):1160-70.
dc.relationStrosnider H, Kennedy C, Monti M, Yip F. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015–United States. Morb Mortal Wkly Rep Surveill Summ Wash DC 2002. 2017;66(13):1-10.
dc.relationToy S, Demircan N. Possible ways of mitigating the effects of cli-mate change using efficient urban planning and landscape design principles in Turkey. Fresenius Environ Bull. 2019;710-7.
dc.relationCanales-Rodríguez MÁ, Quintero-Núñez M, Castro-Romero TG, García-Cuento RO. Las Partículas respirables PM10 y su composición química en la zona urbana y rural de Mexicali, Baja California en México. Inf Tecnológica. 2014;25(6):13-22.
dc.relationOstro B. Fine particulate air pollution and mortality in two Southern California counties. Environ Res. 1995;70(2):98-104.
dc.relationGaviria CF, Benavides C, Arroyave C. Contaminación por material particulado (pm2,5 y pm10) y consultas por enfermedades respiratorias en Medellín (2008-2009). Fac Nac Salud Pública El Escen Para Salud Pública Desde Cienc. 2011;29(3):13.
dc.relationPiscitelli P, Miani A, Setti L, De Gennaro G, Rodo X, Artinano B, et al. The role of outdoor and indoor air quality in the spread of SARS-CoV-2: Overview and recommendations by the research group on COVID-19 and particulate matter (RESCOP commission). Environ Res. 2022;211:113038.
dc.relationolano-Mora A, Solano-Castillo A, Gamboa-Ellis C. SARS-CoV-2: la nueva pandemia. Rev Medica Sinerg. 2020;5(7):e538.
dc.relationOyarzún G M. Contaminación aérea y sus efectos en la salud. Rev Chil Enfermedades Respir. 2010;26(1):16-25.
dc.relationGrimalt JO, Vílchez H, Fraile-Ribot PA, Marco E, Campins A, Orfila J, et al. Spread of SARS-CoV-2 in hospital areas. Environ Res. 2022;204:112074.
dc.relationGrimalt JO, Vílchez H, Fraile-Ribot PA, Marco E, Campins A, Orfila J, et al. Spread of SARS-CoV-2 in hospital areas. Environ Res. 2022;204:112074.
dc.relationaridi S, Niazi S, Sadeghi K, Naddafi K, Yavarian J, Shamsipour M, et al. A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci Total Environ. 2020;725:138401.
dc.relationOng SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020;323(16):1610.
dc.relationZhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci. 2020;117(26):14857- 63.
dc.relationStadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci. 2020;117(22):11875-7.
dc.relationComunian S, Dongo D, Milani C, Palestini P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. Int J Environ Res Public Health. 2020;17(12):4487.
dc.relationLiu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. Aerodynamic analysis of SARSCoV-2 in two Wuhan hospitals. Nature. 2020;582(7813):557-60.
dc.relationChia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11(1):2800.
dc.relationDomingo JL, Rovira J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res. 2020;187:109650.
dc.relationXu H, Yan C, Fu Q, Xiao K, Yu Y, Han D, et al. Possible environmental effects on the spread of COVID-19 in China. Sci Total Environ. 2020;731:139211.
dc.relationPansini R, Fornacca D. COVID-19 Higher Mortality in Chinese Regions With Chronic Exposure to Lower Air Quality. Front Public Health [Internet]. 2021 [citado 14 de octubre de 2022];8. Disponible en: https://www.frontiersin.org/articles/10.3389/ fpubh.2020.597753
dc.relationHernandez-Carballo I, Bakola M, Stuckler D. The impact of air pollution on COVID-19 incidence, severity, and mortality: A systematic review of studies in Europe and North America. Environ Res. 2022;215:114155.
dc.relationFrontera A, Cianfanelli L, Vlachos K, Landoni G, Cremona G. Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. J Infect. 2020;81(2):255-9.
dc.relationBossak BH, Andritsch S. COVID-19 and Air Pollution: A Spatial Analysis of Particulate Matter Concentration and Pandemic-Associated Mortality in the US. Int J Environ Res Public Health. 2022;19(1):592.
dc.relationYao Y, Pan J, Wang W, Liu Z, Kan H, Qiu Y, et al. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Sci Total Environ. 2020;741:140396.
dc.relationWu X, Nethery RC, Sabath MB, Braun D, Dominici F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci Adv. 2020;6(45):eabd4049.
dc.relationDomingo JL, Marquès M, Rovira J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ Res. 2020;188:109861.
dc.relationSharma AK, Balyan P. Air pollution and COVID-19: Is the connect worth its weight? Indian J Public Health. 2020;64(Supplement):S132-4.
dc.relationKenarkoohi A, Noorimotlagh Z, Falahi S, Amarloei A, Mirzaee SA, Pakzad I, et al. Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus. Sci Total Environ. 2020;748:141324.
dc.relationRahmani AR, Leili M, Azarian G, Poormohammadi A. Sampling and detection of corona viruses in air: A mini review. Sci Total Environ. 2020;740:140207.
dc.relationSetti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, et al. SARSCov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environ Res. 2020;188:109754.
dc.relationLópez JH, Romo ÁS, Molina DC, Hernández GÁ, Cureño ÁBG, Acosta MA, et al. Detection of Sars-Cov-2 in the air of two hospitals in Hermosillo, Sonora, México, utilizing a low-cost environmental monitoring system. Int J Infect Dis. 2021;102:478-82.
dc.relationRodríguez-Villamizar LA, Belalcázar-Ceron LC, Fernández-Niño JA, Marín-Pineda DM, Rojas-Sánchez OA, Acuña-Merchán LA, et al. Air pollution, sociodemographic and health conditions effects on COVID-19 mortality in Colombia: An ecological study. Sci Total Environ. 2020;144020.
dc.relationMojena-López DE, Ortega-González TA, Casilles-Vega LEF, Leyva-Santos LJ. Nubes de polvo del Sahara. Su presencia en Cuba. Rev Cuba Meteorol. 2015;21(1):120-34.
dc.relationHe S, Han J. Electrostatic fine particles emitted from laser printers as potential vectors for airborne transmission of COVID-19. Environ Chem Lett. 2020;1-8.
dc.relationMorawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int. 2020;142:105832.
dc.relationKelly-Cirino CD, Nkengasong J, Kettler H, Tongio I, Gay-Andrieu F, Escadafal C, et al. Importance of diagnostics in epidemic and pandemic preparedness. BMJ Glob Health. 2019;4(Suppl 2):e001179.
dc.relationCorman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3).
dc.relationPan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(4):410–1.
dc.relationRubin D, Huang J, Fisher BT, Gasparrini A, Tam V, Song L, et al. Association of social distancing, population density, and temperature with the instantaneous reproduction number of SARS-CoV-2 in counties across the United States. JAMA Netw Open. 2020;3(7):e2016099–e2016099.
dc.relationCorman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045.
dc.relationAbuabara-Franco E, Bohórquez-Rivero J, Restom-Arrieta J, Uparella-Gulfo I, SáenzLópez J, Restom-Tinoco J. Infección por SARS-CoV-2 y enfermedad COVID-19: revisión literaria. Revista Salud Uninorte. 2020;36(1):196–230.
dc.relationvan Kasteren PB, van der Veer B, van Den Brink S, Wijsman L, De jonge J, van den Brandt A, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 2020;128:104412.
dc.relationYip CCY, Ho CC, Chan JFW, To KKW, Chan HSY, Wong SCY, et al. Development of a novel, genome subtraction-derived, SARS-CoV-2-specific COVID-19-nsp2 real-time RT-PCR assay and its evaluation using clinical specimens. Int J Mol Sci. 2020;21(7):2574.
dc.relationAlcoba-Florez J, Gil-Campesino H, de Artola DGM, González-Montelongo R, Valenzuela-Fernández A, Ciuffreda L, et al. Sensitivity of different RT-qPCR solutions for SARSCoV-2 detection. International Journal of Infectious Diseases. 2020;99:190–2.
dc.relationVogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, et al. Analytical sensitivity and efficiency comparisons of SARS-COV-2 qRT-PCR assays. medRxiv. 2020;
dc.relationLong QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200–4.
dc.relationWang Y, Kang H, Liu X, Tong Z. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. Vol. 92, Journal of Medical Virology. 2020.
dc.relationFarfour E, Lesprit P, Visseaux B, Pascreau T, Jolly E, Houhou N, et al. The Allplex 2019- nCoV (Seegene) assay: which performances are for SARS-CoV-2 infection diagnosis? European Journal of Clinical Microbiology and Infectious Diseases. 2020;39(10).
dc.relationKapitula DS, Jiang Z, Jiang J, Zhu J, Chen X, Lin CQ. Performance & quality evaluation of marketed COVID-19 RNA detection kits. medRxiv. 2020;
dc.relationCeraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020;92(5).
dc.relationLiotti FM, Menchinelli G, Marchetti S, Morandotti GA, Sanguinetti M, Posteraro B, et al. Evaluation of three commercial assays for SARS-CoV-2 molecular detection in upper respiratory tract samples. European Journal of Clinical Microbiology and Infectious Diseases. 2021;40(2).
dc.relationAxell-House DB, Lavingia R, Rafferty M, Clark E, Amirian ES, Chiao EY. The estimation of diagnostic accuracy of tests for COVID-19: A scoping review. Vol. 81, Journal of Infection. 2020.
dc.relationMaxmen A. Slew of Trials Launch To Test Coronavirus Treatments in China. Nature. 2020;578(7795).
dc.relationWorld Health Organization OMS PAHO (PAHO). Coronavirus. 2023.
dc.relationKudo E, Israelow B, Vogels CBF, Lu P, Wyllie AL, Tokuyama M, et al. Detection of SARS-CoV-2 RNA by multiplex RTqPCR. PLoS Biol. 2020;18(10):1–9.
dc.relationPalacio K, Felipe J, Correa G, Aguilar-jiménez W, Afanador C, Teresa M, et al. Validación de una técnica de PCR dúplex usando el gen E y RNasa P para el diagnóstico de SARSCoV-2. 2020;(January).
dc.relationIshige T, Murata S, Taniguchi T, Miyabe A, Kitamura K, Kawasaki K, et al. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories. Clinica Chimica Acta. 2020;507.
dc.relationCuadra TE, Guadrón Meléndez AA, Cruz Aguilar RDJ, Vásquez Rodriguez EA. Factores relevantes sobre el ensayo RT-PCR para la detección de SARS-CoV-2, virus causante del COVID-19. Alerta, Revista científica del Instituto Nacional de Salud. 2021;4(1).
dc.relationMagnusson, B.; Örnemark U. The Fitness for Purpose of Analytical Methods. Eurachem Guide. 2014.
dc.relationOrganización Panamericana de la Salud. Directrices de Laboratorio para la detección y diagnóstico de la Infección con el Nuevo Coronavirus 2019 (2019-nCoV). Paho–Who. 2020;1.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_16ec
dc.subjectCOVID-19 (Enfermedad).
dc.subjectCOVID-19 (Enfermedad) - Aspectos sociales.
dc.subjectCOVID-19 (Enfermedad) - Diagnóstico.
dc.subjectPandemia de COVID-19, 2020-.
dc.subjectCOVID-19 (Enfermedad) - Prevención.
dc.titleLecciones aprendidas del COVID-19: Una mirada interdisciplinaria
dc.typeLibro
dc.typehttp://purl.org/coar/resource_type/c_2f33
dc.typeText
dc.typeinfo:eu-repo/semantics/book
dc.typehttp://purl.org/redcol/resource_type/LIB
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución