dc.contributor | https://orcid.org/0000-0003-2884-9199 | |
dc.contributor | https://orcid.org/0000-0001-9996-3744 | |
dc.contributor | https://orcid.org/0000-0002-9529-9599 | |
dc.contributor | https://scholar.google.com/citations?user=njSjxEIAAAAJ&hl=en | |
dc.contributor | https://scholar.google.com/citations?user=8wjme4oAAAAJ&hl=es | |
dc.contributor | https://scholar.google.com/citations?hl=es&user=mEyMhZAAAAAJ | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000493724 | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000521590 | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000395641 | |
dc.creator | Cabrera Alaix, Cristina Eugenia | |
dc.creator | Cerón Marín, Valentina | |
dc.creator | Chávez Vivas, Mónica | |
dc.creator | Gómez Naranjo, Rommel Fabián | |
dc.creator | Quintero Cundumí, Sandra Lorena | |
dc.creator | Vargas Gutiérrez, Valentina | |
dc.date.accessioned | 2024-03-22T22:34:40Z | |
dc.date.accessioned | 2024-05-16T21:48:32Z | |
dc.date.available | 2024-03-22T22:34:40Z | |
dc.date.available | 2024-05-16T21:48:32Z | |
dc.date.created | 2024-03-22T22:34:40Z | |
dc.identifier | 978-958-5182-96-7 | |
dc.identifier | https://hdl.handle.net/10901/28763 | |
dc.identifier | https://doi.org/10.18041/978-958-5182-96-7 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9489226 | |
dc.description.abstract | Las Infecciones bacterianas asociadas a la atención en salud constituyen en la
actualidad un problema de salud pública de gran importancia que afecta a varios
países del mundo. Esta problemática ha ido en aumento por la presencia de bacterias
patógenas con resistencia a diversos tipos de antibióticos, debilitando los programas
clínicos y de salud pública que se han diseñado para contener las enfermedades
infecciosas. Este hecho se acentúa aún más en países latinoaméricanos, como es el
caso de Colombia, principalmente en comunidades con un limitado acceso al servicio
médico, a tratamientos oportunos y eficaces y sobre todo a la automedicación, y la
disponibilidad de fármacos alterados.
Inicialmente las bacterias resistentes a los antibióticos eran detectadas en infecciones
relacionadas con una hospitalización reciente o cirugía, residencia prolongada en
centros de cuidado, diálisis y dispositivos médicos percutáneos o catéteres. Sin
embargo, a finales de los 90´s, este tipo de bacterias comenzaron a asociarse a
infecciones adquiridas en la comunidad, agudizando la emergencia de enfermedades
infecciosas, debido a que presentan factores de virulencia y perfiles de sensibilidad a
los antibióticos propios, generando una alarma importante frente al tratamiento de
estos microorganismos.
El impacto negativo de la resistencia a los antibióticos ha ido en aumento porque
en la última década se ha acentuado la presencia de bacterias resistentes en ambientes
naturales y artificiales, favorecida en gran medida porque la mayoría de los compuestos
utilizados en las prácticas médicas, veterinarias y agrícolas son vertidos de forma
continua directamente en los efluentes o a las redes municipales sin metabolizar o
solo parcialmente metabolizados.
El grupo de investigación en enfermedades infecciosas y microbiología molecular
(Gimmein) viene trabajando en la problemática que genera la resistencia bacteriana
a los antibióticos desde el año 2008, inicialmente realizando investigaciones con
patógenos resistentes aislados en pacientes con infecciones intrahospitalarias y en el
ambiente hospitalario, y ahora en patógenos encontrados en los ambientes naturales,
inclusive en insectos. Es por eso por lo que el grupo presenta el libro “Desafíos para
enfrentar la resistencia a los antibióticos en bacterias patógenas en el tercer decenio del siglo XXI”,
que aborda la problemática de los patógenos resistentes o multirresistentes presentes
en diferentes ambientes que son potenciales fuentes de infección.
En los capítulos 1 y 2 se establecen las características y mecanismos por los cuales
las bacterias se hacen resistentes a los antibióticos y la epidemiología de estas en el
ambiente hospitalario y en los naturales como las aguas, el suelo y en los animales a
través del contacto directo por el consumo o tenencia de ellos.
En los capítulos 3 y 4 se aborda la problemática de la resistencia en bacterias
Gram positivas de interés clínico como son los Enterococcus sp. y los Staphylococcus sp.
En el capítulo 3 se profundiza sobre el impacto que han generado las infecciones por
Enterococcus faecalis, antes considerada una bacteria inocua, pero en la actualidad debido
a la resistencia adquirida se le asocia con múltiples infecciones y complicaciones.
En el capítulo 4 se presenta un estudio epidemiológico realizado en la ciudad de Cali
con cepas de Staphylococcus aureus sensibles y resistentes a la meticilina aisladas de
estudiantes de la área de la Salud.
La epidemiología de bacterias Gram negativas de la familia enterobacteriácea y
las no fermentadoras como Pseudomonas aeruginosa resistentes a los antibióticos, son
analizadas en los capítulos siguientes. En el capítulo 5, se realiza una revisión del papel
que desempeñan las bacterias resistentes del género Klebsiella y Enterobacter.
Es necesario abordar la resistencia detectada en bacterias en todos estos ambientes,
con el fin de sensibilizar sobre el impacto negativo que generan los patógenos resistentes
en la salud pública y la necesidad de tener una efectiva vigilancia epidemiológica,
que promueva el desarrollo de estrategias racionales de control en la dispersión
de bacterias resistentes, lo que implica un nuevo abordaje para el tratamiento y
diagnóstico de una infección. | |
dc.publisher | Universidad Libre, Seccional Cali | |
dc.relation | Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and drug resistance, 13, 423–434. | |
dc.relation | Annavajhala, M. K., Gomez-Simmonds, A., & Uhlemann, A. C. (2019). MultidrugResistant Enterobacter cloacae Complex Emerging as a Global, Diversifying Threat. Frontiers in microbiology, 10, 44. | |
dc.relation | Aubry-Damon, H., Galimand, M., Gerbaud, G., Courvalin, P. (2002). rpoB mutation conferring rifampin resistance in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 46(5),1571–3. | |
dc.relation | Bush, K., Jacoby, G.A., Medeiros, A.A. (1995). A funtional classification scheme for B-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39:1211-33. | |
dc.relation | Cattoir, V., & Leclercq, R. (2013). Twenty-five years of shared life with vancomycinresistant enterococci: Is it time to divorce. Journal of Antimicrobial Chemotherapy, 68(4), 731–42. | |
dc.relation | Cesur, S., Demiröz, A.P. (2013). Antibiotics and the Mechanisms of Resistance to Antibiotics. Medical Journal of Islamic World Academy of Sciences, 21(4),138–42. | |
dc.relation | Chang, H-H., Cohen, T., Grad, Y.H., Hanage, W.P., O’Brien, T.F., Lipsitch, M. ( 2015). Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiology and Molecular Biology Reviews, 79(1),101–16. | |
dc.relation | Cochetti, I., Tili, E., Mingoia, M., Varaldo, P.E., Montanari, M.P. (2008). erm(B)- carrying elements in tetracycline-resistant pneumococci and correspondence between Tn1545 and Tn6003. Antimicrobial Agents and Chemotherapy, 52(4),1285–90. | |
dc.relation | Colca, J.R., McDonald, W.G., Waldon, D.J., Thomasco, L.M., Gadwood,R.C., Lund, E.T. (2003). Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. Journal of Biological Chemistry, 278(24), 21972–9. | |
dc.relation | Cornaglia, G. (2009). Fighting infections due to multidrug-resistant Grampositive pathogens. Clinical Microbiology and Infection, 15, 209–211. | |
dc.relation | Cornick, J.E., & Bentley, S.D. (2012). Streptococcus pneumoniae: The evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infection,14(7–8),573–83. | |
dc.relation | Crisóstomo, M.I., Westh, H., Tomasz, A., Chung, M., Oliveira, D., de Lencastre, H. (2001). The evolution of methicillin resistance in Staphylococcus aureus: Similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proceedings of the National Academy of Sciences of the United States of America,98, 9865–9870. | |
dc.relation | Daly, M.M., Doktor, S., Flamm, R., Shortridge, D. (2004). Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. Journal Clinic Microbiology, 42(8), 3570–4. | |
dc.relation | Du, D., Wang-Kan, X., Neuberger, A., van Veen, H.W., Pos, K.M., Piddock, L. J.V., Luisi B.F. (2018). Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology, 16, 523–539. | |
dc.relation | Elkins, C.A., & Nikaido, H. (2002). Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. Journal of Bacteriology, 84(23), 6490–8. | |
dc.relation | Falagas, M.E., Karageorgopoulos, D.E. (2008). Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among gramnegative bacilli: Need for international harmonization in terminology. Clinical Infectious Diseases, 46(7),1121–2. | |
dc.relation | Friedman, L., Alder, J.D., Silverman, J.A. (2006). Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, (6), 2137–45. | |
dc.relation | Gullberg. E., Albrecht, L.M., Karlsson, C., Sandegren, L., Andersson, D.I. (2014). Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio, 5(5),19–23. | |
dc.relation | Hall, R.M. (2012). Integrons and gene cassettes: Hotspots of diversity in bacterial genomes. Annals of the New York Academy of Sciences,1267(1),71–8. | |
dc.relation | Holt, K.E., Wertheim, H., Zadoks, R.N., Baker, S., Whitehouse, C.A., Dance, D. (2015). Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences of the United States of America, 112(27, E3574–81. | |
dc.relation | Hooper, D. C., & Jacoby, G. A. (2015). Mechanisms of drug resistance: quinolone resistance. Annals of the New York Academy of Sciences, 1354(1), 12–31. | |
dc.relation | Kak, V., & Chow, J.W. (2014). Acquired Antibiotic Resistances in Enterococci. The Enterococci, 355–83. | |
dc.relation | Kallen, A.J., Hidron, A.I., Patel, J., Kallen, A.J., Hidron, A.I. (2014). Multidrug Resistance among Gram-Negative Pathogens That Caused HealthcareAssociated Infections Reported to the National Healthcare Safety Network , 2006 – 2008 Multidrug Resistance among Gram- Negative Pathogens That Caused Healthcare-Associated Infect, 31, 528–31 | |
dc.relation | Karaman, R., Jubeh, B., & Breijyeh, Z. (2020). Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules (Basel, Switzerland), 25(12), 2888. | |
dc.relation | Kärpänoja, P., Nyberg, S.T., Bergman, M., Voipio, T., Paakkari, P., Huovinen, P., Sarkkinen, H., Finnish Study Group for Antimicrobial Resistance (FiRe Network). (2008). Connection between trimethoprim-sulfamethoxazole use and resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrobial Agents and Chemotherapy, 52(7), 2480-5. | |
dc.relation | Kong, K.F., Schneper, L., Mathee, K. (2010). Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. Apmis,118(1),1–36. | |
dc.relation | Kumar, G., Ambati, G., Tambat, R., Kumar, S., Nandanwar, H., Sobhia, M., Jachak, S. (2020). Synthesis, biological evaluation and computational studies of acrylohydrazide derivatives as potential Staphylococcus aureus NorA efflux pump inhibitors. Bioorganic Chemistry, 104, 104225 | |
dc.relation | Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection,18, 268–81. | |
dc.relation | Matsuoka, M., Inoue, M., Endo, Y., Nakajima. Y. (2003). Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. FEMS Microbiology Letters, ;220(2), 287–93. | |
dc.relation | Mella, M.S., Sepúlveda, A. M., González, R.G., Bello, T.H, Domínguez, Y. M, Zemelman, Z. R. (2004). Aminoglucósidos-aminociclitoles: Características estructurales y nuevos aspectos sobre su resistencia. Revista Chilena de infectología, 21(4),330–8. | |
dc.relation | Miller, S.I. (2016). Antibiotic resistance and regulation of the Gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio, 7(5), 5–7. | |
dc.relation | Morejón-García, M. (2013). Betalactamasas de espectro extendido. Revista Cubana de Medicina, 52(4), 272-280. | |
dc.relation | Nelson, R.E., Slayton, R.B., Stevens, V.W., Jones, M.M., Khader, K., Rubin, M.A. (2017). Attributable mortality of healthcare-associated infections due to multidrug-resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infection Control & Hospital Epidemiology, 38(7), 848–56 | |
dc.relation | Nikaido, H., & Pagès, J.M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiology Reviews, 36(2), 340-63. | |
dc.relation | Poole, K. (2001). Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. Journal of Molecular Microbiology and Biotechnology, 3(2), 255-64. | |
dc.relation | Rajagopal, M., Walker, S. (2017). Envelope Structures of Gram-Positive Bacteria. Current Topics in Microbiology and Immunology, 404, 1-44. | |
dc.relation | Reyes, A., Bello, H., Domínguez, M., Mella, S., Zemelman, R., González, G. (2003). Prevalence and types of class 1 integrons in aminoglycoside-resistant enterobacteriaceae from several Chilean hospitals. Journal of Antimicrobial Chemotherapy, 51(2), 317–21 | |
dc.relation | Richardson, L.A. (2017). Understanding and overcoming antibiotic resistance. PLOS Biology,15(8),1–5. | |
dc.relation | Schindler, B.D., Kaatz, G.W. (2016). Multidrug efflux pumps of Gram-positive bacteria. Drug Resistance Updates, 27,1-1. | |
dc.relation | Shaw, K.J., Rather, P.N., Hare, R.S., Miller, G.H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycosidemodifying enzymes. Microbiology Review, 57(1),138–63. | |
dc.relation | Soucy, S.M., Huang, J., Gogarten, J.P. (2015). Horizontal gene transfer: Building the web of life. Nature Reviews Genetics, 6(8),472–82. | |
dc.relation | Tafur, D., Villegas, V (2018). Mecanismos de resistencia a los antibióticos en bacterias Gram negativas. Infectio, 12(3), 217–26. | |
dc.relation | Valdés, M.Á.S (2017). La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas, 6(3), 402–19 | |
dc.relation | Vogwill, T., Kojadinovic, M., Maclean, R.C. (2016). Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proceedings of the Royal Society B: Biological Sciences, 283,1830. | |
dc.relation | Wichelhaus, T.A., Schäfer, V., Brade, V., Böddinghaus, B. (2001). Differential effect of rpoB mutations on antibacterial activities of rifampicin and KRM-1648 against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 47(2), 153–6. | |
dc.relation | Zhong, X., Xu, H., Chen, D., Zhou, H., Hu, X., Cheng, G (2014). First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese Hospital. PLoS One, 9(12),1–11 | |
dc.relation | Agersø, Y., Jensen, L.B., Givskov, M., Roberts, M.C (2002). The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS Microbiology Letters,214(2),251–6. | |
dc.relation | Al Bayssari, C., Dabboussi, F., Hamze, M., Rolain, J.M. (2015). Emergence of carbapenemase producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. Journal of Antimicrobial Chemotherapy,70(3),950–1. | |
dc.relation | Allen, H. K., J. Donato, H. H. Wang, K. A. Cloud-Hansen, J. E. Davies, and J. Handelsman. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8, 251–259. | |
dc.relation | Apostolos, O.P., George, A. G, Athena, M. (2016). Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments. FEMS Microbiology Ecology, 92(5),fiw042 | |
dc.relation | Aquaculture system. Letters in Applied Microbiology, 51(6),611–8. | |
dc.relation | Awad, A., Ramadan, H., Nasr, S., Ateya, A., Atwa, S. (2017). Genetic Characterization, Antimicrobial Resistance Patterns and Virulence Determinants of Staphylococcus aureus Isolated form Bovine Mastitis. Pakistan Journal of Biological Sciences,20(6),298-305 | |
dc.relation | Broszat, M., Nacke, H., Blasi, R., Siebe, C., Huebner, J., Daniel, R., & Grohmann, E. (2014). Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley, Mexico. Applied and environmental microbiology, 80(17), 5282–5291. | |
dc.relation | Camiade, M., Bodilis, J., Chaftar, N., Riah-Anglet, W., Gardères, J., Buquet, S. (2020). Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiology Ecology,96(2). | |
dc.relation | Cerqueira, F., Matamoros, V., Bayona, J., Elsinga, G., Hornstra, L.M., Piña, B. (2019). Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes. Environmental Research,170,16–25. | |
dc.relation | Cole, S.T. (2014). Who will develop new antibacterial agents?. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, (1645). | |
dc.relation | Costanzo, S.D., Murby, J., Bates, J. (2005). Ecosystem response to antibiotics entering the aquatic environmental. Marine Pollution Bulletin, 51, 218-223. | |
dc.relation | Cu,i P., Feng, L., Zhang, L., He, J., An, T., Fu, X., Li, C., Zhao, X., Zhai, Y., Li, H., Yan, W., Li, H., Luo, X., Lei, C., Wang, H., Yang, X. (2020). Antimicrobial Resistance, Virulence Genes, and Biofilm Formation Capacity Among Enterococcus species From Yaks in Aba Tibetan Autonomous Prefecture, China. Frontiers in Microbiology,12;11, 1250. | |
dc.relation | Czekalski, N., Gascón Díez, E., Bürgmann, H. (2014). Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. Multidisciplinary Journal of Microbial Ecology, 8(7),1381–90. | |
dc.relation | D’Costa, V.M., Griffiths, E., Wright, G.D. (2007). Expanding the soil antibiotic resistome: exploring environmental diversity. Current Opinion in Microbiology,10(5),481–9 | |
dc.relation | Davies, J., Davies, D. (2010). Resistance Origins and Evolution of Antibiotic. Microbiology and Molecular Biology Reviews, 74(3), 417. | |
dc.relation | Díaz-Jiménez, D., García-Meniño, I., Fernández, J., García, V., Mora, A. (2020). Chicken and turkey meat: Consumer exposure to multidrugresistant Enterobacteriaceae including mcr-carriers, uropathogenic E. coli and highrisk lineages such as ST131, International Journal of Food Microbiology,331,108750. | |
dc.relation | Doi, Y., Paterson, D.L., Egea, P., Pascual, A., López-Cerero, L., Navarro, M.D., Adams-Haduch, J.M., Qureshi, Z.A., Sidjabat, H.E, Rodríguez-Baño, J. (2010). Extended-spectrum and CMY-type beta-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clinical Microbiology and Infection,16(1),33-8. | |
dc.relation | Dungan, R.S., Strausbaugh, C.A., Leytem,.A.B. (2019). Survey of selected antibiotic resistance genes in agricultural and non-agricultural soils in southcentral Idaho. FEMS Microbiology Ecology,;95(6),1–9 | |
dc.relation | Economou V, Gousia P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist, 8, 49–61. | |
dc.relation | Escolà-Vergé, L., Los-Arcos, I., Almirante, B. (2020). New antibiotics for the treatment of infections by multidrug-resistant microorganisms. Medicina Clínica,154(9),351–7. | |
dc.relation | Escolà-Vergé, L., Pigrau, C., Almirante, B. (2019). Ceftolozane/tazobactam for the treatment of complicated intra-abdominal and urinary tract infections: Current perspectives and place in therapy. Infection and Drug Resistance,12,1853–67. | |
dc.relation | . Escolà-Vergé, L., Pigrau, C., Los-Arcos, I., Arévalo, Á., Viñado, B., Campany, D., Larrosa, N., Nuvials, X., Ferrer, R., Len, O., Almirante, B. (2018). Ceftolozane/ tazobactam for the treatment of XDR Pseudomonas aeruginosa infections. Infection,46(4),461-468. | |
dc.relation | European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency (EMA). (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal, 15(7),4872 | |
dc.relation | Finley, R.L., Collignon, P., Larsson, D.G.J., Mcewen, S.A., Li, X.Z., Gaze, W.H. (2013). The scourge of antibiotic resistance: The important role of the environment. Clinical Infectious Diseases, 57(5),704-10. | |
dc.relation | Frost, I., Van Boeckel, T.P., Pires, J., Craig, J., Laxminarayan, R. (2019). Global geographic trends in antimicrobial resistance: The role of international travel. Journal of Travel Medicine, 26(8),1–13. | |
dc.relation | Furukawa, K., Ramesh, A., Zhou, Z., Weinberg, Z., Vallery, T., Winkler, W. C., & Breaker, R. R. (2015). Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. Molecular cell, 57(6), 1088–1098. | |
dc.relation | Golob, M., Pate, M., Kušar, D., Dermota, U., Avberšek, J., Papić, B., Zdovc, I. (2019). Antimicrobial Resistance and Virulence Genes in Enterococcus faecium and Enterococcus faecalis from Humans and Retail Red Meat. BioMed research international, 9;2019,2815279. | |
dc.relation | Gómez, P., Lozano, C., Benito, D., Estepa, V., Tenorio, C., Zarazaga, M., Torres, C. (2016). Characterization of staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398. Environmental Pollution,212,71-76. | |
dc.relation | Gonzaga-López, T.I., Salgado-Muñoz, T.G., Morones-Esquivel, I., MatamorosMejía, A.P., Terán-González, J.O., Arteaga-Vázquez, S., Castro-D’Franchis, L.J., Reyes-Jiménez, A.E., Mijangos-Huesca, F.J. (2016). Neumonía bacteriana, resistencia antimicrobiana e importancia de crear guías locales. Medicina Interna de México,32(3),271–6 | |
dc.relation | . Guzman-Otazo, J., Gonzales-Siles, L., Poma, V., Bengtsson-Palme, J., Thorell, K., Flach, C.F., Iñiguez, V., Sjöling, Å. (2019). Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS One,14;14(1),e0210735. | |
dc.relation | Harada, K., Shimizu, T., Mukai, Y., Kuwajima, K., Sato, T., Kajino, A., Usui, M., Tamura, Y., Kimura, Y., Miyamoto, T., Tsuyuki, Y., Ohki, A., & Kataoka, Y. (2017). Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan. PloS one, 12(3), e0174178. | |
dc.relation | Hawkins, P., Mercado, E., Chochua, S., Castillo, M. E., Reyes, I., Chaparro, E., Gladstone, R., Bentley, S. D., Breiman, R. F., Metcalf, B. J., Beall, B., Ochoa, T. J., & McGee, L. (2017). Key features of invasive pneumococcal isolates recovered in Lima, Peru determined through whole genome sequencing. International journal of medical microbiology, 307(7), 415–421 | |
dc.relation | Hirsch, D., Pereira, D.J., Logato, P.V.R., Piccoli, R.H., Figueiredo, H.C.P. (2006). Identificação e resistência a antimicrobianos de espécies de Aeromonas móveis isoladas de peixes e ambientes aquáticos. Ciência e Agrotecnologia, 30(6),1211–7 | |
dc.relation | Ho, P.S. (2020). Descubrimiento de antibacterianos: desafíos del siglo XXI. Multidisciplinary Digital Publishing Institute, 9,213. | |
dc.relation | Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., Benito, N., & Grau, S. (2019). Epidemiology and Treatment of MultidrugResistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clinical microbiology reviews, 32(4), e00031-19.. | |
dc.relation | Hu, Y., Cheng, H. (2014). Research Opportunities for Antimicrobial Resistance Control in China’s Factory Farming, Environmental Science and Technology, 48, 10, 5364–5. | |
dc.relation | Jiménez Velásquez, S.C., Torres Higuera, L.D., Parra Arango, J.L., Rodríguez Bautista, J.L., García Castro, F.E., Patiño Burbano, R.E. (2020). Profile of antimicrobial resistance in isolates of Staphylococcus spp. obtained from bovine milk in Colombia. Revista Argentina de Microbiología, 52(2),121– | |
dc.relation | Johnsen, B.O., Handal, N., Meisal, R., Bjørnholt, J.V., Gaustad, P., Leegaard, T.M. (2017). erm gene distribution among Norwegian Bacteroides isolates and evaluation of phenotypic tests to detect inducible clindamycin resistance in Bacteroides species. Anaerobe, 47:226–32. | |
dc.relation | Johnson, J. R., Sannes, M. R., Croy, C., Johnston, B., Clabots, C., Kuskowski, M. A., Bender, J., Smith, K. E., Winokur, P. L., & Belongia, E. A. (2007). Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002-2004. Emerging infectious diseases, 13(6), 838–846. | |
dc.relation | Karaiskos, I., Lagou, S., Pontikis, K., Rapti, V., Poulakou, G. (2019). The “Old” and the “New” antibiotics for MDR Gram-negative pathogens: For whom, when, and how. Frontiers in Public Health, 7,1–25. | |
dc.relation | Karlowsky, J.A., Hoban, D.J., Hackel, M.A., Lob, S.H., Sahm, D.F. (2017). Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013–2015. The Brazilian Journal of Infectious Diseases,;21(3):343–8. | |
dc.relation | Kasaeva, T. Overcoming the drug-resistant TB crisis in children and adolescents. 2020;2021. (2020). Available from: https://www.who.int/news/item/20-11- 2020-overcoming-the-drug-resistanttb-crisis-in-children-and-adolescents. | |
dc.relation | Khan, A., Miller, W.R., Arias, C.A. (2018). Mechanisms of antimicrobial resistance among hospital-associated pathogens. Expert Review of Antiinfective Therapy,16(4),269–87. | |
dc.relation | Klotz, P., Higgins, P.G., Schaubmar, A.R., Failing, K., Leidner, U., Seifert, H., Scheufen, S., Semmler, T., Ewers, C. (2019). Seasonal Occurrence and Carbapenem Susceptibility of Bovine Acinetobacter baumannii in Germany. Frontiers in Microbiology,10,272. | |
dc.relation | Knapp, C.W., Dolfing, J., Ehlert, P.A.I., Graham, D.W. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology,44(2),580–7. | |
dc.relation | Lata, P., Ram, S., & Shanker, R. (2016). Multiplex PCR based genotypic characterization of pathogenic vancomycin resistant Enterococcus faecalis recovered from an Indian river along a city landscape. SpringerPlus, 5(1), 1199. | |
dc.relation | Latorre-Barragan, M.F., Zurita-Leal, A.C., Gudiño Gomez jurado, M.E. (2019). Resistencia de los antibióticos ß-lactámicos en países latinoamericanos. Medwave,19(10),e7729. | |
dc.relation | Leverstein-van H.M.A., Dierikx, C.M., Cohen, S.J, Voets, G.M., van den Munckhof, M.P., van Essen-Zandbergen, A., Platteel, T., Fluit, A.C., van de Sande-Bruinsma, N., Scharinga, J., Bonten M.J., Mevius, D.J. (2011). National ESBL surveillance group. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect, (6),873-80. | |
dc.relation | Levy-Blitchtein, S., Roca, I., Plasencia-Rebata, S., Vicente-Taboada, W., VelásquezPomar, J., Muñoz, L., Moreno-Morales, J., Pons, M. J., Del ValleMendoza, J., & Vila, J. (2018). Emergence and spread of carbapenemresistant Acinetobacter baumannii international clones II and III in Lima, Peru. Emerging microbes & infections, 7(1), 119. | |
dc.relation | Li, D., Yu, T., Zhang, Y., Yang, M., Li, Z., Liu, M., & Qi, R. (2010). Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Applied and environmental microbiology, 76(11), 3444–3451. | |
dc.relation | Lima, R.M.S., Figueiredo, H.C.P., Faria, F.C de, Picolli, R.H., Bueno Filho, J.S de S, Logato, P.V.R. (2006). Resistência a antimicrobianos de bactérias oriundas de ambiente de criação e filés de tilápias do nilo (Oreochromis niloticus). Ciência e Agrotecnologia.;30(1):126–32. | |
dc.relation | Lima, T., Domingues, S., & Da Silva, G. J. (2020). Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. Veterinary sciences, 7(3), 110. | |
dc.relation | Lloyd, D.H. (2007). Reservoirs of antimicrobial resistance in pet animals. Clinical Infectious Diseases, 45(SUPPL. 2), S148-52 | |
dc.relation | Lopatto, E., Choi, J., Colina, A., Ma, L., Howe, A., & Hinsa-Leasure, S. (2019). Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. PloS one, 14(8), e0220770. | |
dc.relation | López. L., Santamaría. J., Sánchez. A., Castro. L., Moreno. J.L. (2012). Presence of tetracycline resistant bacteria and genes in grassland-based animal production systems. Ciencia e Investigación Agraria, 39(3),411–23 | |
dc.relation | Malabarba, A., Goldstein, B.P. (2005). Origin, structure, and activity in vitro and in vivo of dalbavancin. Journal of Antimicrobial Chemotherapy,55(SUPPL. 2),15–20. | |
dc.relation | Mao, D., Luo, Y., Mathieu, J., Wang, Q., Feng, L., M, Q., Feng, C., Alvarez, P.J.J. (2014). Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environmental Science and Technology, 48(1),71–8. | |
dc.relation | Martínez-Puchol, Sandra, Pons, María J., Ruiz-Roldán, Lidia, LaureanoAdame, Laura, Corujo, Alfredo, Ochoa, Theresa J., & Ruiz, Joaquim. (2020). Resistencia a nitrofuranos en Salmonella enterica aisladas de carne para consumo humano. Revista Peruana de Medicina Experimental y Salud Publica, 37(1), 99-103. | |
dc.relation | Meng, L., Liu, H., Lan, T., Dong, L., Hu, H., Zhao, S., Zhang, Y., Zheng, N., & Wang, J. (2020). Antibiotic Resistance Patterns of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Frontiers in microbiology, 11, 1005. | |
dc.relation | Monte, D. F., Mem, A., Fernandes, M. R., Cerdeira, L., Esposito, F., Galvão, J. A., Franco, B., Lincopan, N., & Landgraf, M. (2017). Chicken Meat as a Reservoir of Colistin-Resistant Escherichia coli Strains Carrying mcr-1 Genes in South America. Antimicrobial agents and chemotherapy, 61(5), e02718-16. | |
dc.relation | Muller, H., Sib, E., Gajdiss, M., Lenz-plet, F., Al, E. (2018) Dissemination of multi-resistant Gram-negative bacteria into German Wastewater and superface waters. Journal of Chemical Information and Modeling, 01(01),1689–99. | |
dc.relation | Nesme, J., Simonet, P. (2015).The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology, 17(4),913–30. | |
dc.relation | Núñez, L., Tornello, C., Puentes, N., Moretton, J. (2012). Bacterias resistentes a antibióticos en aguas grises como agentes de riesgo sanitario. Revista Ambiente e Agua, 7(3),235–43. | |
dc.relation | Organización Mundial de la Salud (OMS). (2020). Antibiotic resistance. 31 July, 1, https://www.who.int/news-room/fact-sheets/detail/antibioticresistance | |
dc.relation | Osman, K., Orabi, A., Elbehiry, A., Hanafy, M.H., Ali, A.M. (2019). Pseudomonas species isolated from camel meat: quorum sensing-dependent virulence, biofilm formation and antibiotic resistance. Future Microbiology, 14, 7, 609-622. | |
dc.relation | Osman, K.M., Badr, J., Orabi, A., Elbehiry, A., Saad, A., Ibrahim, M.D.S., Hanafy, M.H. (2019). Poultry as a vector for emerging multidrug resistant Enterococcus spp.: First report of vancomycin (van) and the chloramphenicolflorfenicol (cat-fex-cfr) resistance genes from pigeon and duck faeces. Microbial Pathogenesis, 128:195-205. | |
dc.relation | Pappas G. (2011). An animal farm called extended-spectrum betalactamase: Antimicrobial resistance as a zoonosis. Clinical Microbiology and Infection,17(6),797–8. | |
dc.relation | Payne, D.J., Gwynn, M.N., Holmes, D.J, Pompliano, D.L. (2007). Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery, 6(1),29–40. | |
dc.relation | Peeters, L.E.J., Argudín, M.A., Azadikhah, S., Butaye, P. (2015). Antimicrobial resistance and population structure of Staphylococcus aureus recovered from pigs farms.Veterinary Microbiology,180(1–2),151–6. | |
dc.relation | ereira, A., Fariña, N., de Vega, M., González, P., Rodríguez, F., de Figueredo, L. (2016). Enterobacterias productoras de Betalactamasas de espectro extendido aisladas de pacientes ambulatorios y hospitalizados en un Laboratorio privado de Asunción. Ciencia y Salud, 1414(11),17–2417. | |
dc.relation | Pérez-Etayo, L., González, David., Leiva, José., Vitas, A.I. (2020). .MultidrugResistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France Microorganisms, 8(9), 1425. | |
dc.relation | Perry, J., Waglechner, N., & Wright, G. (2016). The Prehistory of Antibiotic Resistance. Cold Spring Harbor perspectives in medicine, 6(6), a025197. | |
dc.relation | Planet. PJ., Diaz, L., Rios, R., Arias, C.A. (2016). Global spread of the communityassociated methicillin-resistant Staphylococcus aureus USA 300 Latin American Variant. Journal of Infectious Diseases, 214(10),1609–10. | |
dc.relation | Porrero, C.M., Harrinson, E.M., Garayzabal, J.F., Paterson, G., Guierrier, A.D., Al, E. (2014). Detection of mecC-MRSA isolates in river water: a potential role for water in the environmental dissemination. Environmental Microbiology Reports, 6(6),705–8. | |
dc.relation | Prado, T., Pereira, W.C., Silva, D.M., Seki, L.M., Carvalho, A.P.D.A., Asensi, M.D. (2008). Detection of extended-spectrum -lactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. Letters in Applied Microbiology,46(1),136–41. | |
dc.relation | Qin, J., Maixnerová, M., Nemec, M., Feng, Y., Zhang, X., Nemec, A., Zong, Z. (2019). Acinetobacter cumulans sp. nov., isolated from hospital sewage and capable of acquisition of multiple antibiotic resistance genes. Systematic and Applied Microbiology, 42(3), 319–25. | |
dc.relation | Rahube, T.O., Marti, R., Scott, A., Tien, Y.C., Murray, Sabourin. (2014). Impact of Fertilizing with Raw or Anaerobically Digested Sewage Sludge on the Abundance of Antibiotic Resistant Coliforms, Antibiotic Resistance Genes, and Pathogenic Bacteria in Soil and on Vegetables at Harvest. Applied and Environmental Microbiology, 80(22), 6898-6907. | |
dc.relation | Rebouças, H., de Sousa, V., Lima, S., Vasconcelos, R., de Carvalho P.B., dos Fernandes Vieira, R.H.S. (2011). Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceará, Brazil. Environmental Research,111(1),21–4 | |
dc.relation | Ribeiro, R. V., Reis, E.M.F., Reis, C.M.F., Freitas Almeida, A.C, Rodrigues, D.P. (2010). Incidence and antimicrobial resistance of enteropathogens isolated from an integrated | |
dc.relation | Ribeiro, R. V., Reis, E.M.F., Reis, C.M.F., Freitas-Almeida, A.C, Rodrigues, D.P. (2010). Incidence and antimicrobial resistance of enteropathogens isolated from an integrated aquaculture system. Letters in Applied Microbiology,51(6),611–8. | |
dc.relation | Rodríguez, E.A., Garzón, L.M., Gómez, I.D., Jiménez, J.N. (2020). Multidrug resistance and diversity of resistance profiles in carbapenem-resistant Gramnegative bacilli throughout a wastewater treatment plant in Colombia. Journal of Global Antimicrobial Resistance,22,358–66. | |
dc.relation | Romeu Álvarez, B., Salazar Jiménez, P., Lugo Moya, D., Rojas Hernández, N.M,. Eslava Campos, C.A. (2012). Susceptibilidad antimicrobiana de aislamientos de Escherichia coli procedentes de ecosistemas dulceacuícolas. Revista Cubana de Medicina Tropical, 64(2), 132-141. | |
dc.relation | Sanmartín, B., Bravo, V., Borie, C. (2005). Evaluacion de la resistencia antimicrobiana en ganado bovino en Chile, utilizando E.coli como bacteria indicadora. Archivos de Medicina Veterinaria, 37(2),117–23 | |
dc.relation | Sánchez, M.P., Gutiérrez, N.P., Padilla, M.Y., Suárez, L.L. (2015). Resistencia antimicrobiana de bacterias aisladas de clínicas veterinarias de la ciudad de Ibagué, Colombia. Revista Universidad y Salud, 17(1),18-31. | |
dc.relation | Sánchez-Baena, A. M., Caicedo-Bejarano, L. D., & Chávez-Vivas, M. (2021). Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review. International journal of environmental research and public health, 18(5), 2348. | |
dc.relation | Santestevan, N.A., de Angelis Zvoboda, D., Prichula, J., Pereira, R.I., Wachholz, G.R., Cardoso, L.A., de Moura, T.M., Medeiros, A.W., de Amorin, D.B., Tavares, M., d’Azevedo, P.A., Franco, A.C., Frazzon, J., Frazzon, A.P. (2015). Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal). World Journal of Microbiology & Biotechnology, 31(12),1935-46. | |
dc.relation | Savin, M., Bierbaum, G, Hammerl, A., Heinemann, C., Parcina, M., Sib, E. (2020). ESKAPE Bacteria and Exten.ded-Spectrum--Lactamase Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Applied and Environmental Microbiology Journal, 86(8):1–18 | |
dc.relation | Shirley, M. (2018). Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs, 78(6),675–92. | |
dc.relation | Silva E Souza, D.G., Avelar, K.E.S., Antunes, L.C.M., Lobo, L.A., Domingues, R.M.C.P., De Souza Ferreira, M.C. (2000). Resistance profile of Bacteroides fragilis isolated in Brazil. Do they shelter the cfiA gene? Journal of Antimicrobial Chemotherapy, 45(4),475–81 | |
dc.relation | Silver, L.L. (2011). Challenges of antibacterial discovery. Clinical Microbiology Reviews Journal, 24(1),71–109. | |
dc.relation | . Storteboom, H., Arabi, M. (2010). Identification of antibiotic-resistance-gene Molecular signatures suitable as tracers of pristine river, urban and agricultural sources. Environmental Science and Technology, 44(6),1947–53. | |
dc.relation | Tamborini, A.L., Casabona, L.M., Viñas, M.R., Asato, V., Hoffer, A., Farace, M.I., Lucero, M.C., Corso, A., Pichel, M. (2012). Campylobacter spp.: prevalencia y caracterización feno-genotípica de aislamientos de pacientes con diarrea y de sus mascotas en la provincia de La Pampa, Argentina [Campylobacter spp.: prevalence and pheno-genotypic characterization of isolates recovered from patients suffering from diarrhea and their pets in La Pampa Province, Argentina]. Revista Argentina de Microbiología, 44(4),266- | |
dc.relation | Tavakol, M., Momtaz, H., Mohajeri, P., Shokoohizadeh, L., & Tajbakhsh, E. (2018). Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. Antimicrobial resistance and infection control, 7, 120. | |
dc.relation | Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics (Basel, Switzerland), 9(12), 918. | |
dc.relation | Tobudic, S., Forstner, C., Burgmann, H., Lagler, H., Ramharter, M., Steininger, C., Vossen, M., Winkler, S., Thalhammer, F. (2018). Dalbavancin as primary and sequential treatment for gram-positive infective endocarditis: 2-year experience at the general hospital of Vienna. Clinical Infectious Diseases,67(5),795–798. | |
dc.relation | Tommasi, R., Iyer, R., Miller, A.A. (2018). Antibacterial Drug Discovery: Some Assembly Required. ACS Infectious Diseases,4(5),686–95. | |
dc.relation | Ugarte Silva, R.G, Olivo López., J.M., Corso, A., Pasteran, F., Albornoz, E., & Sahuanay Blácido, Z.P. (2018). Resistencia a colistín mediado por el gen mcr-1 identificado en cepas de Escherichia coli y Klebsiella pneumoniae: primeros reportes en el Perú. Anales de la Facultad de Medicina, 79(3), 213217. | |
dc.relation | Vivas, M.C., Caicedo, L.D., Castillo, J.E. (2019). Occurrence of LactamaseProducing Gram-Negative Bacterial Isolates in Water Sources in Cali City, Colombia. International Journal Microbiology,2019 | |
dc.relation | Warren, R. E., Ensor, V. M., O’Neill, P., Butler, V., Taylor, J., Nye, K., Harvey, M., Livermore, D. M., Woodford, N., Hawkey, P. M. (2008). Imported chicken meat as a potential source of quinolone-resistant Escherichia coli producing extended-spectrum -lactamases in the UK, Journal of Antimicrobial Chemotherapy, 61, 3, 504–508. | |
dc.relation | Watkins, R. R., Holubar, M., & David, M. Z. (2019). Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrobial agents and chemotherapy, 63(12), e01216-19. | |
dc.relation | Wellington, E.M.H., Boxall, A.B.A., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet infectious diseases,13(2),155–65. | |
dc.relation | Wu, N., Zhang, W., Xie, S., Zeng, M., Liu, H., Yang, J., Liu, X., Yang, F. (2020). Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China. Frontiers of Environmental Science & Engineering,14(1),1–12. | |
dc.relation | Xi, C., Zhang, Y., Marrs, C. F., Ye, W., Simon, C., Foxman, B., & Nriagu, J. (2009). Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Applied and environmental microbiology, 75(17), 5714-5718. | |
dc.relation | Xiong, W., Sun, Y., Zhang, T., Ding, X., Li, Y., Wang, M. (2015). Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China. Microbial Ecology, 70(2),425–32. | |
dc.relation | Xu, T., Zhang, C., Ji, Y., Song, J., Liu, Y., Guo, Y., Zhou, K. (2021). Identification of mcr-10 carried by self-transmissible plasmids and chromosome in Enterobacter roggenkampii strains isolated from hospital sewage water. Environmental Pollution, 268(Pt B),115706. | |
dc.relation | Yadav, R., Kumar, A., Singh, V.K., Jayshree., Yadav, S.K. (2018). Prevalence and antibiotyping of Staphylococcus aureus and methicillinresistant S. aureus (MRSA) in domestic animals in India. Journal of Global Antimicrobial Resistance,15,222–5. | |
dc.relation | .Zhang, R., Liu, Z., Li, J., Lei, L., Yin, W., Li, M., Wu, C., Walsh, T. R., Wang, Y., Wang, S., & Wu, Y. (2017). Presence of VIM-Positive Pseudomonas Species in Chickens and Their Surrounding Environment. Antimicrobial agents and chemotherapy, 61(7), e00167-17. | |
dc.relation | Zhu, Y. G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y. S., Capon, A., & Banwart, S. (2019). Soil biota, antimicrobial resistance and planetary health. Environment International, 131, [105059]. | |
dc.relation | Abranches, J., Tijerina, P., Avilés-Reyes, A., Gaca, A.O., Kajfasz, J.K., Lemos, J.A. (2013). The Cell Wall-Targeting Antibiotic Stimulon of Enterococcus faecalis. PLoS One,8(6), e64875. http://journals.plos.org/plosone/article/ asset?id=10.1371%2Fjournal.pone.0 064875.PDF68. | |
dc.relation | Agaba, P., Tumukunde, J., Tindimwebwa, J., & Kwizera, A. (2017). Nosocomial bacterial infections and their antimicrobial susceptibility patterns among patients in Ugandan intensive care units: a cross sectional study. BMC research notes, 10(1), 349. https://doi.org/10.1186/s13104-017-26955 | |
dc.relation | Agudelo Higuita, N.I., Huycke, M.M. (2014). Enterococcal Disease, Epidemiology, and Implications for Treatment. In: Gilmore MS, Clewell DB, Ike Y, et al., editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary; 2014-. https://www.ncbi.nlm.nih. gov/books/NBK190429/ | |
dc.relation | Agudelo Higuita, N.I., Huycke, M.M. Enterococcal Disease, Epidemiology, and Implications for Treatment. (2014). In: Gilmore MS, Clewell DB, Ike Y, et al., editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary; 2014-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK190429/ | |
dc.relation | Ahmadpoor, N., Ahmadrajabi, R., Esfahani, S., Hojabri, Z., Moshafi, M.H., Saffari, F (2021). High-Level Resistance to Erythromycin and Tetracycline and Dissemination of Resistance Determinants among Clinical Enterococci in Iran. Medical Principles and Practice, 30,272-276. | |
dc.relation | Arancibia, F & Montufar, F. (2011). Prevalence of nosocomial infection in Latin American intensive care units. International Journal of Infection Control, 7, 1-5. 10.3396/ijic.V7i4.039.11. | |
dc.relation | Arbeloa, A., Segal, H., Hugonnet, J. E., Josseaume, N., Dubost, L., Brouard, J. P., Gutmann, L., Mengin-Lecreulx, D., & Arthur, M. (2004). Role of class A penicillin-binding proteins in PBP5-mediated beta-lactam resistance in Enterococcus faecalis. Journal of bacteriology, 186(5), 1221–1228. https://doi. org/10.1128/JB.186.5.1221-1228.2004 | |
dc.relation | Arias, C. A., Panesso, D., McGrath, D. M., Qin, X., Mojica, M. F., Miller, C., Diaz, L., Tran, T. T., Rincon, S., Barbu, E. M., Reyes, J., Roh, J. H., Lobos, E., Sodergren, E., Pasqualini, R., Arap, W., Quinn, J. P., Shamoo, Y., Murray, B. E., & Weinstock, G. M. (2011). Genetic basis for in vivo daptomycin resistance in enterococci. The New England journal of medicine, 365(10), 892–900. https://doi.org/10.1056/ NEJMoa1011138 | |
dc.relation | Arias, C.A., Murray, B.E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology,10(4),266-78. | |
dc.relation | Ayeni, F. A., Odumosu, B. T., Oluseyi, A. E., & Ruppitsch, W. (2016). Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. Journal of pharmacy & bioallied sciences, 8(1), 69–73. https://doi.org/10.4103/0975-7406.171729 | |
dc.relation | Ayobami, O., Willrich, N., Reuss, A., Eckmanns, T., & Markwart, R. (2020). The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerging microbes & infections, 9(1), 1180–1193. https://doi.org/10.1080/222217 51.2020.1769500 | |
dc.relation | Azzouz A, Preuss CV. Linezolid. (2021). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih. gov/books/NBK539793/ | |
dc.relation | Barnes, A., Dale, J. L., Chen, Y., Manias, D. A., Greenwood Quaintance, K. E., Karau, M. K., Kashyap, P. C., Patel, R., Wells, C. L., & Dunny, G. M. (2017). Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence, 8(3), 282–296. https://doi.org /10.1080/21505594.2016.1208890 | |
dc.relation | Beganovic, M., Luther, M. K., Kristich , L. B., Arias, C. A., Rybak, M. J., & LaPlante, K. L. (2018). A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 67(2), 303–309. https://doi.org/10.1093/cid/ciy064 | |
dc.relation | Behnood, A., Farajnia, S., Moaddab, S. R., Ahdi-Khosroshahi, S., & Katayounzadeh, A. (2013). Prevalence of aac(6’)-Ie-aph(2 )-Ia resistance gene and its linkage to Tn5281 in Enterococcus faecalis and Enterococcus faecium isolates from Tabriz hospitals. Iranian journal of microbiology, 5(3), 203–208. | |
dc.relation | Bender, E. A., de Freitas, A. L., Reiter, K. C., Lutz, L., & Barth, A. L. (2009). Identification, antimicrobial resistance and genotypic characterization of Enterococcus spp. isolated in Porto Alegre, Brazil. Brazilian journal of microbiology, 40(3), 693–700. https://doi.org/10.1590/S1517-838220090003000035 | |
dc.relation | Bourafa, N., Abat, C., Loucif, L., Olaitan, A.O., Bentorki, A.A., Boutefnouchet, N., Rolain, J.M. (2016). Identification of vancomycin-susceptible major clones of clinical Enterococcus from Algeria. Journal of Global Antimicrobial Resistance,6:78-83. | |
dc.relation | Brown, S. P., Cornforth, D. M., & Mideo, N. (2012). Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends in microbiology, 20(7), 336–342. https://doi.org/10.1016/j.tim.2012.04.005. | |
dc.relation | Cabrera, C.E., Gómez, R.F, Zúñiga, A.E., Corral, R.H., López, B., & Chávez, M. (2011). Epidemiology of nosocomial bacteria resistant to antimicrobials. Colombia Médica, 42(1), 117-125. Recuperado en 10 de noviembre de 2021, de http://www.scielo.org.co/scielo.ph | |
dc.relation | Cai., J, Wang, Y., Schwarz, S., Lv, H., Li, Y., Liao, K., Yu, S., Zhao, K., Gu, D., Wang, X., Zhang, R., Shen, J. (2015). Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010-2014. Clinical Microbiology and Infection,21(12),1095.e1-4. | |
dc.relation | Casellas JM. Resistencia a los antibacterianos en América Latina: consecuencias para la infectología. Rev Panam Salud Pública. 2011; 30(6):519–28. | |
dc.relation | Cattoir, V., Leclercq, R. (2013). Twenty-five years of shared life with vancomycinresistant Enterococci: is it time to divorce? J Antimicrob Chemother,68,731–42. | |
dc.relation | Cavaco, L.M., Bernal, J.F., Zankari, E., Léon, M., Hendriksen, R.S., PerezGutierrez, E., Aarestrup, F.M., Donado-Godoy, P. (2017). Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia). Journal of Antimicrobial Chemotherapy,72(3),678-683. | |
dc.relation | Ceci, M., Delpech, G., Sparo, M., Mezzina, V., Sánchez Bruni, S., & Baldaccini, B. (2015). Clinical and microbiological features of bacteremia caused by Enterococcus faecalis. Journal of infection in developing countries, 9(11), 1195–1203. https://doi. org/10.3855/jidc.6587 | |
dc.relation | Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States (2013). www.cdc.gov/drugresistance/pdf/ar-threats-2013508 | |
dc.relation | Chen, H., Wu, W., Ni, M., Liu, Y., Zhang, J., Xia, F., He, W., Wang, Q., Wang, Z., Cao, B., Wang, H. (2013). Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. International Journal of Antimicrobial Agents, 42(4),317-21. | |
dc.relation | Clinical and Laboratory Standard Institute (CLSI). (2018). .Performance Standards for Antimicrobial Susceptibility Testing; 28th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute. | |
dc.relation | Cohen, A. L., Roh, J. H., Nallapareddy, S. R., Höök, M., & Murray, B. E. (2013). Expression of the collagen adhesin ace by Enterococcus faecalis strain OG1RF is not repressed by Ers but requires the Ers box. FEMS microbiology letters, 344(1), 18–24. https://doi.org/10.1111/15746968.12146 | |
dc.relation | Conceição, N., Rodrigues, W.F., de Oliveira, K.L.P., Pinheiro L.E., Rezende L., de Cunha Hueb Barata, C., Gonçalves, A. (2020). Beta-lactams susceptibility testing of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis isolates: a comparative assessment of Etest and disk diffusion methods against broth dilution. Annals of Clinical Microbiology and Antimicrobials,19, 43 https:// doi.org/10.1186/s12941-020-00386-8. | |
dc.relation | Conde-Estévez, D., Sorli, L., Morales-Molina, J. A., Knobel, H., Terradas, R., Mateu-de Antonio, J., Horcajada, J. P., & Grau, S. (2010). Características clínicas diferenciales entre las bacteriemias por Enterococcus faecalis y Enterococcus faecium. Enfermedades infecciosas y microbiologia clinica, 28(6), 342–348. https:// doi.org/10.1016/j.eimc.2009.06.011 | |
dc.relation | Correa, L., Gaona, C.E., Pierna, M., de la Fuente, R., González, C., Sacristán, B. (2018). Meningitis neonatal por Enterococcus faecalis. Revista del Laboratorio Clínico,11(2), 101-103. | |
dc.relation | Dahl A., Bruun N.E. Enterococcus faecalis infective endocarditis: Focus on clinical aspects. Expert Rev. Cardiovasc. Ther. 2013;11:1247–1257. | |
dc.relation | Davlieva, M., Zhang, W., Arias, C. A., & Shamoo, Y. (2013). Biochemical characterization of cardiolipin synthase mutations associated with daptomycin resistance in enterococci. Antimicrobial agents and chemotherapy, 57(1), 289–296. https://doi.org/10.1128/AAC.01743-12. | |
dc.relation | . de Almeida, L. M., de Araújo, M. R., Iwasaki, M. F., Sacramento, A. G., Rocha, D., da Silva, L. P., Pavez, M., de Brito, A. C., Ito, L. C., Gales, A. C., Lincopan, N., Sampaio, J. L., & Mamizuka, E. M. (2014). Linezolid resistance in vancomycinresistant Enterococcus faecalis and Enterococcus faecium isolates in a Brazilian hospital. Antimicrobial agents and chemotherapy, 58(5), 2993–2994. https://doi. org/10.1128/AAC.02399-14. | |
dc.relation | . de Regt, M. J., van Schaik, W., van Luit-Asbroek, M., Dekker, H. A., van Duijkeren, E., Koning, C. J., Bonten, M. J., & Willems, R. J. (2012). Hospital and community ampicillin-resistant Enterococcus faecium are evolutionarily closely linked but have diversified through niche adaptation. PloS one, 7(2), e30319. https://doi. org/10.1371/journal.pone.0030319. | |
dc.relation | Determinant of Intestinal Colonization, Journal of Infectious Diseases, 211(1), 62–71, https://doi.org/10.1093/infdis/jiu402. | |
dc.relation | Diab, M., Salem, D., El-Shenawy, A Amira El-Far, Aya Abdelghany, Alaa Reda Awad, Inas El Defrawy & Mohamed Shemis. (2019). Detection of high level aminoglycoside resistance genes among clinical isolates of Enterococcus species. Egyptian Journal of Medical Human Genetics, 20,28), https://doi.org/10.1186/ s43042-019-0032-3. | |
dc.relation | Díaz, L., Kiratisin, P., Mendes, R. E., Panesso, D., Singh, K. V., & Arias, C. A. (2012). Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrobial agents and chemotherapy, 56(7), 3917–3922. https://doi.org/10.1128/AAC.00419-12. | |
dc.relation | Dönhöfer, A., Franckenberg, S., Wickles, S., Berninghausen, O., Beckmann, R., Wilson D.N. (2012). Structural basis for TetM-mediated tetracycline resistance. Proceedings of the National Academy of Sciences,109(42),16900-16905; https://doi. org/10.1073/pnas.1208037109. | |
dc.relation | ECDC. (2019). Surveillance of antimicrobial resistance in Europe 2018. Stockholm: European Centre for Disease Prevention and Control. | |
dc.relation | Edelsberg, J., Weycker, D., Barron, R., Li, X., Wu, H., Oster, G., Badre, S., Langeberg, W.J., Weber, D.J. (2014). Prevalence of antibiotic resistance in US hospitals. Diagnostic Microbiology and Infectious Disease, 78,255–62. | |
dc.relation | England, P.H. (2014). Identifcation of Streptococcus species, Enterococcus species and morphologically similar organisms. UK Standards for microbiology investigations,4,1–36. | |
dc.relation | EPINE-EPPS (2015). Estudio de Prevalencia de las Infecciones Nosocomiales en España. Sociedad Española de Medicina Preventiva, Salud Pública e Higiene. http://hws.vhebron.net/epine/. | |
dc.relation | European Centre for Disease Prevention and Control. (2015). Antimicrobial resistance surveillance in Europe 2014. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC;. http://www.ecdc.europa.eu. | |
dc.relation | Fernández-Hidalgo, N., Escolà-Vergé, L., & Pericàs, J. M. (2020). Enterococcus faecalis endocarditis: what’s next?. Future microbiology, 15, 349–364. https://doi. org/10.2217/fmb-2019-0247. | |
dc.relation | Fiore, E., Van Tyne, D., & Gilmore, M. S. (2019). Pathogenicity of Enterococci. Microbiology spectrum, 7(4), 10.1128/microbiolspec.GPP3-0053-2018. https://doi. org/10.1128/microbiolspec.GPP3-0053-2018. | |
dc.relation | Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews. Microbiology, 13(5), 269–284. https://doi.org/10.1038/ nrmicro3432. | |
dc.relation | Gagetti, P., Bonofiglio, L., Gabarrot, G., Kaufman, S., Mollerach, M., Vigliarolo, L., von Specht, M., Toresani, I., Lopardo, H.A. (2019). Resistance to -lactams in enterococci. Revista Argentina de Microbiología, 51(2),179183. | |
dc.relation | Galimand, M., Schmitt, E., Panvert, M., Desmolaize, B., Douthwaite, S., Mechulam, Y., & Courvalin, P. (2011). Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA (New York, N.Y.), 17(2), 251–262. https://doi.org/10.1261/rna.2233511. | |
dc.relation | Gandra, S., Braykov, N., Laxminarayan, R. (2013). East North Central Region Has the Highest Prevalence of Vancomycin-Resistant Enterococcus faecalis in the United States. Infection Control and Hospital Epidemiology, 34(4),443-5. | |
dc.relation | García-Solache, M., & Rice, L. B. (2019). The Enterococcus: a Model of Adaptability to Its Environment. Clinical microbiology reviews, 32(2), e0005818. Https:// doi.org/10.1128/CMR.00058-18 | |
dc.relation | Gilmore, M. S., Rauch, M., Ramsey, M. M., Himes, P. R., Varahan, S., Manson, J. M., Lebreton, F., & Hancock, L. E. (2015). Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7273–7278. https:// doi.org/10.1073/pnas.1500553112. | |
dc.relation | Goh, H., Yong, M., Chong, K., & Kline, K. A. (2017). Model systems for the study of Enterococcal colonization and infection. Virulence, 8(8), 1525–1562. https://doi.org/10.1080/21505594.2017.1279766. | |
dc.relation | Guffey, A.A., Loll P.J. (2021). Regulation of Resistance in VancomycinResistant Enterococci: The VanRS Two-Component System. Microorganisms, 9(10), 2026. https://doi.org/10.3390/microorganisms9102026. | |
dc.relation | Gupta K, Bhadelia N. (2014). Management of urinary tract infections from multidrug-resistant organisms. Infectious Disease Clinics of North America, 28(1),49–59. | |
dc.relation | Guzman Prieto, A. M., van Schaik, W., Rogers, M. R., Coque, T. M., Baquero, F., Corander, J., & Willems, R. J. (2016). Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of theClones?. Frontiers in microbiology, 7, 88. https://doi.org/10.3389/fmicb.2016.00788. | |
dc.relation | Hall, C.L., Tschannen, M., Worthey, E.A., Kristich, C.J. (2013). IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 57(12),6179-86. doi: 10.1128/AAC.01472-13. | |
dc.relation | He, T., Shen, Y., Schwarz, S., Cai, J., Lv, Y., Li, J., Feßler, A.T., Zhang, R., Wu, C., Shen, J., Wang, Y. (2016). Genetic environment of the transferable oxazolidinone/ phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. Journal of Antimicrobial Chemotherapy,71(6),1466-73. | |
dc.relation | Hegstad, K., Mikalsen, T., Coque, T.M., Werner, G., Sundsfjord, A. (2010). Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clinical Microbiology and Infection,16 (6), 541-54. | |
dc.relation | Hollenbeck, B.L., Rice, L.B. (2012). Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence,3(5),421-33. | |
dc.relation | Humphries, R. M., Pollett, S., & Sakoulas, G. (2013). A current perspective on daptomycin for the clinical microbiologist. Clinical | |
dc.relation | Instituto de Salud Pública de Chile. (2013). Vigilancia de Enterococcus spp. resistente a Vancomicina Chile, 2010-2012. Boletín Instituto de Salud Pública de Chile 3,10. | |
dc.relation | Instituto Nacional de Salud. Vigilancia de Resistencia bacteriana (Whonet) Primer semestre año 2015. Dirección de Redes en Salud Pública. Despacho Dirección de Redes. Bogotá, Diciembre de 2015. | |
dc.relation | Isenman, H., Michaels, J. & Fisher, D. (2016). Global variances in infection control practices for vancomycin resistant Enterococcus – results of an electronic survey. Antimicrobial Resistance and Infection Control, 5, 41 https://doi.org/10.1186/ s13756-016-0140-5. | |
dc.relation | Jabbari Shiadeh, S. M., Pormohammad, A., Hashemi, A., & Lak, P. (2019). Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infection and drug resistance, 12, 2713–2725. https://doi.org/10.2147/IDR.S206084. | |
dc.relation | Jabbari Shiadeh, S. M., Pormohammad, A., Hashemi, A., & Lak, P. (2019). Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infection and drug resistance, 12, 2713–2725. https://doi.org/10.2147/IDR.S206084. | |
dc.relation | Kang, S.W., Lee, S.J., Choi, S.S. (2015). Distribution of Multidrug Efflux Pump Genes in Enterococci spp. Isolated from Bovine Milk Samples and Their Antibiotic Resistance Patterns. Korean Journal of Microbiology,49(2),126-130. | |
dc.relation | Kellogg, S.L., Kristich, C.J. (2016). Functional Dissection of the CroRS TwoComponent System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis. Journal of Bacteriology, 31;198(8):1326-36. doi: 10.1128/ JB.00995-15. | |
dc.relation | Khodabandeh, M., Mohammadi, M., Abdolsalehi, M.R., Hasannejad-Bibalan, M., Gholami, M., Alvandimanesh, A., Pournajaf, A., Rajabnia, R. (2020). High-Level Aminoglycoside Resistance in Enterococcus Faecalis and Enterococcus Faecium; as a Serious Threat in Hospitals. Infectious Disorders - Drug Targets, 20(2),223-228. | |
dc.relation | Kristich CJ, Rice LB, Arias CA. (2014). Enterococcal Infection—Treatment and Antibiotic Resistance. Enterococci From Commensals to Lead Causes. Infection and Drug Resistance,87–134. | |
dc.relation | Kristich, C.J., Little, J.L., Hall, C.L., Hoff, J.S. (2011). Reciprocal regulation of cephalosporin resistance in Enterococcus faecalis. mBio, 2,e00199-11. doi:10.1128/mBio.00199-11. | |
dc.relation | La Rosa, S. L., Montealegre, M. C., Singh, K. V., & Murray, B. E. (2016). Enterococcus faecalis Ebp pili are important for cell-cell aggregation and intraspecies gene transfer. Microbiology (Reading, England), 162(5), 798–802. https://doi. org/10.1099/mic.0.000276. | |
dc.relation | Laverde Gómez, J. A., Hendrickx, A. P., Willems, R. J., Top, J., Sava, I., Huebner, J., Witte, W., & Werner, G. (2011). Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. PloS one, 6(4), e16720. https://doi. org/10.1371/journal.pone.0016720. | |
dc.relation | Lavilla, L., Benomar, N., Sánchez, A., Casado, M.C., Gálvez, A., Abriouel, H. (2014). Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiology, 44,249-257. | |
dc.relation | Lebeaux, D., Fernández-Hidalgo, N., Pilmis, B., Tattevin, P., Mainardi, J.L. (2020). Aminoglycosides for infective endocarditis: time to say goodbye?. Clinical Microbiology and Infection 26(6),723-728. https://doi.org/10.1016/j. cmi.2019.10.017. | |
dc.relation | Lebreton, F., Depardieu, F., Bourdon, N., Fines-Guyon, M., Berger, P., Camiade, S., Leclercq, R., Courvalin, P., & Cattoir, V. (2011). D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrobial agents and chemotherapy, 55(10), 4606–4612. https://doi.org/10.1128/AAC.00714-11. | |
dc.relation | Lebreton, F., Willems, R.J.L., Gilmore, M.S., Lebreton, F., Willems, R.J.L. (2014). Enterococcus diversity, origins in nature, and gut colonization. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, MA: http://www.ncbi.nlm.nih.gov/books/NBK190427/. | |
dc.relation | Lionel Rigottier-Gois, Clément Madec, Albertas Navickas, Renata C. Matos, Elodie Akary-Lepage, Michel-Yves Mistou, Pascale Serror. (2015). The Surface Rhamnopolysaccharide Epa of Enterococcus faecalis Is a Key | |
dc.relation | Liu Y, Cao B, Gu L, Wang H. Molecular characterization of vancomycinresistant enterococci in a Chinese hospital between 2003 and 2009. Microb Drug Resist. 2011; 17:449–455. | |
dc.relation | López-Luis, B.A., Sifuentes-Osornio, J., Lambraño-Castillo, D., Ortiz Brizuela, E., Ramírez-Fontes, A., Tovar-Calderón, Y.E., Leal-Vega, F.J., Bobadilla-del-Valle, M., Ponce-de-León, A. (2021). Risk factors and outcomes associated with vancomycin-resistant Enterococcus faecium and ampicillin-resistant Enterococcus faecalis bacteraemia: A 10-year study in a tertiary-care centre in Mexico City. Journal of Global Antimicrobial Resistance,24,198-204. https://doi. org/10.1016/j.jgar.2020.12.005. | |
dc.relation | Madsen, K. T., Skov, M. N., Gill, S., & Kemp, M. (2017). Virulence Factors Associated with Enterococcus Faecalis Infective Endocarditis: A Mini Review. The open microbiology journal, 11, 1–11. https://doi.org/10.2174/1874285801711010001. | |
dc.relation | Magill, S. S., Dumyati, G., Ray, S. M., & Fridkin, S. K. (2015). Evaluating Epidemiology and Improving Surveillance of Infections Associated with Health Care, United States. Emerging infectious diseases, 21(9), 1537–1542. https://doi. org/10.3201/eid2109.150508. | |
dc.relation | Manassero, N.C., Navarro, M., Rocchi, M., di Bella, H., Gasparotto, A.M., Ocaña, Carrizo, A.V., Novillo, F., Furiasse, D., Monterisi, A. (2016). Análisis de 117 episodios de bacteriemia por enterococo: estudio de la epidemiología, microbiología y sensibilidad a los antimicrobianos. Revista Argentina de Microbiología, 48(4),298-302. | |
dc.relation | Manson, J.M., Hancock, L.E., Gilmore, M.S. (2010). Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proceedings of the National Academy of Sciences of the United States of America, 107(27,: 12269-74. | |
dc.relation | Mendes, R.E., Hogan, P.A., Streit, J.M., Jones, R.N., Flamm, R.K. (2014). Zyvox annual appraisal of potency and spectrum (ZAAPS) program: report of linezolid activity over 9 years (2004–12). Journal of Antimicrobial Chemotherapy, 69,582-1588. | |
dc.relation | Meziane-Cherif, D., Saul, F. A., Haouz, A., & Courvalin, P. (2012). Structural and functional characterization of VanG D-Ala:D-Ser ligase associated with vancomycin resistance in Enterococcus faecalis. The Journal of biological chemistry, 287(45), 37583–37592. https://doi.org/10.1074/jbc.M112.405522. | |
dc.relation | Meziane-Cherif, D., Stogios, P.J., Evdokimova, E., Savchenko, A., Courvalin P. (2014). Evolution of vancomycin resistance d,d-peptidases. Proceedings of the National Academy of Sciences,111 (16), 5872-5877. | |
dc.relation | Mikalsen, T., Pedersen, T., Willems, R., Coque, T.M., Werner, G., Sadowy, E., van Schaik, W., Jensen, L.B., Sundsfjord, A., Hegstad, K. (2015). Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics,16,282. | |
dc.relation | Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert review of anti-infective therapy, 12(10), 1221– 1236. https://doi.org/10.1586/14787210.2014.956092. | |
dc.relation | Mishra, N. N., Bayer, A. S., Tran, T. T., Shamoo, Y., Mileykovskaya, E., Dowhan, W., Guan, Z., & Arias, C. A. (2012). Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PloS one, 7(8), e43958. https://doi.org/10.1371/journal.pone.0043958 | |
dc.relation | Mohamed, O.A., Keith, E. (2018). Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health Baptiste.Microbial Drug Resistance, 24(5),590-606. https://doi. org/10.1089/mdr.2017.0147 | |
dc.relation | Moon, T. M., D’Andréa, É. D., Lee, C. W., Soares, A., Jakoncic, J., Desbonnet, C., Garcia-Solache, M., Rice, L. B., Page, R., & Peti, W. (2018). The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into -lactam resistance. The Journal of biological chemistry, 293(48), 18574–18584. https://doi.org/10.1074/jbc.RA118.006052. | |
dc.relation | Moure, Z., Lara, N., Marín, M., Sola-Campoy, P.J., Bautista, V., GómezBertomeu, F., Gómez-Dominguez, C., Pérez-Vázquez, M., Aracil, B., Campos, J., Cercenado, E., Oteo-Iglesias, J. (2020). Spanish LinezolidResistant Enterococci Collaborating Group. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes. International Journal of Antimicrobial Agents,55(6),105977. | |
dc.relation | Neumann, B., Prior, K., Bender, J. K., Harmsen, D., Klare, I., Fuchs, S., Bethe, A., Zühlke, D., Göhler, A., Schwarz, S., Schaffer, K., Riedel, K., Wieler, L. H., & Werner, G. (2019). A Core Genome Multilocus Sequence Typing Scheme for Enterococcus faecalis. Journal of clinical microbiology, 57(3), e01686-18. https://doi. org/10.1128/JCM.01686-18. | |
dc.relation | Nunez, N., Derré-Bobillot, A., Gaubert, S, Herry, J-M., Deschamps, J., Wei, Y., Baranek, T., Si-Tahar, M., Briandet, R., Serror, P., Archambaud, C. (2018). Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection. Scientific Reports, 8, 1749 https://doi.org/10.1038/s41598-018- 20206-6. | |
dc.relation | Ocvirk, S., Sava, I.G., Lengfelder, I., Lagkouvardos, I., Steck, N., Roh, J.H., Tchaptchet, S., Bao, Y., Hansen, J.J., Huebner, J., Carroll, I.M., Murray, B.E., Sartor, R.B., Haller, D. (2015). Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels. PLOS Pathogens, 11(6),e1004911. doi: 10.1371/journal. ppat.1004911. | |
dc.relation | O’Driscoll, T., & Crank, C. W. (2015). Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infection and drug resistance, 8, 217–230. https://doi.org/10.2147/IDR.S54125. | |
dc.relation | Olawale, K. O., Fadiora, S. O., & Taiwo, S. S. (2011). Prevalence of hospitalacquired enterococci infections in two primary-care hospitals in osogbo, southwestern Nigeria. African journal of infectious diseases, 5(2), 40–46. https://doi. org/10.4314/ajid.v5i2.66513. | |
dc.relation | Padmasini, E., Padmaraj, R., & Ramesh, S. S. (2014). High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. The Scientific World Journal, 2014, 329157. https://doi.org/10.1155/2014/329157. | |
dc.relation | Padmasini, E., Padmaraj, R., Srivani, S. (2014) High Level Aminoglycoside Resistance and Distribution of Aminoglycoside Resistant Genes among Clinical Isolates of Enterococcus Species in Chennai, India”, The Scientific World Journal, 2014, Article ID 329157. https://doi.org/10.1155/2014/329157. | |
dc.relation | Palmer, K. L., Daniel, A., Hardy, C., Silverman, J., & Gilmore, M. S. (2011). Genetic basis for daptomycin resistance in enterococci. Antimicrobial agents and chemotherapy, 55(7), 3345–3356. https://doi.org/10.1128/AAC.00207-11. | |
dc.relation | .Palmer, K.L., Gilmore, M.S. (2010). Multidrug-Resistant Enterococci Lack CRISPR-cas. MBi., 1(4), e00227-10. http://mbio.asm.org/content/1/4/e00227- 10.short?rss=1&ssource=mfc. | |
dc.relation | Pfaller, M. A., Cormican, M., Flamm, R. K., Mendes, R. E., & Jones, R. N. (2019). Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance Patterns of Enterococci: Results From the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open forum infectious diseases, 6(Suppl 1), S54– S62. https://doi.org/10.1093/ofid/ofy344. | |
dc.relation | Pogliano, J., Pogliano, N., & Silverman, J. A. (2012). Daptomycinmediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. Journal of bacteriology, 194(17), 4494–4504. https://doi. org/10.1128/JB.00011-12. | |
dc.relation | Raza, T., Ullah, S. R., Mehmood, K., & Andleeb, S. (2018). Vancomycin resistant Enterococci: A brief review. JPMA. The Journal of the Pakistan Medical Association, 68(5), 768–772. | |
dc.relation | Reyes, K., Malik, R., Moore, C., Donabedian, S., Perri, M., Johnson, L., & Zervos, M. (2010). Evaluation of risk factors for coinfection or cocolonization with vancomycin-resistant enterococcus and methicillinresistant Staphylococcus aureus. Journal of clinical microbiology, 48(2), 628–630. https://doi.org/10.1128/ JCM.02381-08. | |
dc.relation | Rodríguez-Niklitschek, C., Oporto, G.H. (2015). Implicancias clínicas de la contaminación microbiana por Enterococcus faecalis en canales radiculares de dientes desvitalizados: Revisión de la literatura. Revista Odontológica Mexicana,19(3),181-186. | |
dc.relation | Saavedra, S. Y., Bernal, J. F., Montilla-Escudero, E., Torres, G., Rodríguez, M. K., Hidalgo, A. M., Ovalle, M. V., Rivera, S., Perez-Gutierrez, E., & Duarte, C. (2020). Vigilancia nacional de aislamientos clínicos de Enterococcus faecalis resistentes al linezolid portadores del gen optrA en Colombia, 2014-2019 [National surveillance of clinical isolates of Enterococcus faecalis resistant to linezolid carrying the optrA gene in Colombia, 2014-2019]. Revista panamericana de salud publica = Pan. American journal of public health, 44, e104. https://doi. org/10.26633/RPSP.2020.104 | |
dc.relation | Sader, H.S., Farrell, D.J., Flamm, R.K., Jones, R.N.(2014). Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a Worldwide Surveillance Programme (2005-2012). International Journal of Antimicrobial Agents,43(5),465-9. | |
dc.relation | Salipante, S. J., SenGupta, D. J., Cummings, L. A., Land, T. A., Hoogestraat, D. R., & Cookson, B. T. (2015). Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. Journal of clinical microbiology, 53(4), 1072–1079. https://doi.org/10.1128/JCM.0338514}. | |
dc.relation | Schell, C. M., Tedim, A. P., Rodríguez-Baños, M., Sparo, M. D., Lissarrague, S., Basualdo, J. A., & Coque, T. M. (2020). Detection of Lactamase-Producing Enterococcus faecalis and Vancomycin-Resistant Enterococcus faecium Isolates in Human Invasive Infections in the Public Hospital of Tandil, Argentina. Pathogens (Basel, Switzerland), 9(2), 142. https://doi.org/10.3390/pathogens9020142. | |
dc.relation | Shariati, A., Dadashi, M., Chegini, Z., van Belkum, A., Mirzaii, M., Khoramrooz, S. S., & Darban-Sarokhalil, D. (2020). The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrobial resistance and infection control, 9(1), 56. https://doi. org/10.1186/s13756-020-00714-9. | |
dc.relation | Sharifzadeh, V., Mohabati, A., Shahcheraghi F., Khoramabadi, N., Razaz, N., Hosseini, R. (2020). High-level aminoglycoside resistance and distribution of aminoglycoside resistance genes among Enterococcus spp. clinical isolates in Tehran, Iran. Journal of Global Antimicrobial Resistance, 20,318-32.https://doi. org/10.1016/j.jgar.2019.08.008. | |
dc.relation | Shen, J., Wang, Y., Schwarz, S. (2013). Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 68,1697–1706. | |
dc.relation | Shiga, H., Kajiura, T., Shinozaki, J., Takagi, S., Kinouchi, Y., Takahashi, S., Negoro, K., Endo, K., Kakuta, Y., Suzuki, M., Shimosegawa, T. (2012). Changes of faecal microbiota in patients with Crohn’s disease treated with an elemental diet and total parenteral nutrition. Digestive and Liver Disease, 44,736–42. | |
dc.relation | Shutter MC, Akhondi H. (2021).Tetracycline. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK549905. | |
dc.relation | Sidle,r J.A., Battegay, M., Tschudin-Sutter, S., Widmer, A.F., Weisser, M. (2014). Enterococci, Clostridium difficile and ESBL-producing bacteria: epidemiology, clinical impact and prevention in ICU patients. Swiss Medical Weekly,144,w14009. | |
dc.relation | Silva N, Igrejas G, Gonçalves A, Poeta P. 2011. Commensal gut bacteria: distribution of Enterococcus species and prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal. Ann Microbiol 62:449–459. doi:10.1007/ s13213-011-0308-4. | |
dc.relation | Silva, J., Rodríguez, Y., Araya, J., Gahona, J., Valenzuela, N., Guerrero, K., Báez, J., Baquero, F., del Campo, R. (2013). Detección de genes de virulencia en cepas de Enterococcus faecalis susceptibles y resistentes a aminoglucósidos. Revista chilena de infectología, 30(1), 17-22. https://dx.doi.org/10.4067/S0716- 10182013000100003. | |
dc.relation | Silva, J., Rodríguez, Y., Araya, J., Gahona, J., Valenzuela, N., Guerrero, K., Báez, J., Baquero, F., del Campo, Rosa. (2013). Detección de genes de virulencia en cepas de Enterococcus faecalis susceptibles y resistentes a aminoglucósidos. Revista chilena de infectología, 30(1), 17-22. https://dx.doi.org/10.4067/S0716- 10182013000100003. | |
dc.relation | Stogios, P.J., Savchenko, A. (2020). Molecular mechanisms of vancomycin resistance. Protein Science, 29(3),654-669. | |
dc.relation | Sun, H., Wang, H., Xu, Y., Jones, R.N., Costello, A.J., Liu, Y., Li, G., Chen, M., Mendes, R.E. (2012). Molecular characterization of vancomycinresistant Enterococcus spp. clinical isolates recovered from hospitalized patients among several medical institutions in China. Diagnostic Microbiology and Infectious Disease,74(4),399-403. | |
dc.relation | Taglialegna, A., Matilla-Cuenca, L., Dorado-Morales, P., Navarro, Susanna., Ventura, S., Garnett, J.A., Lasa, I., Valle, J. (2020). The biofilmassociated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. npj Biofilms Microbiomes, 6, 15 https://doi.org/10.1038/s41522-0200125-2. | |
dc.relation | Tedim, A. P., Ruiz-Garbajosa, P., Corander, J., Rodríguez, C. M., Cantón, R., Willems, R. J., Baquero, F., & Coque, T. M. (2015). Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Applied and environmental microbiology, 81(5), 1820–1831. https://doi.org/10.1128/AEM.03661-14. | |
dc.relation | Thaker, M., Spanogiannopoulos, P., Wright, G.D. (2010). The tetracycline resistome. Cellular and Molecular Life Sciences,67,419–31. | |
dc.relation | Thurlow, L. R., Thomas, V. C., Narayanan, S., Olson, S., Fleming, S. D., & Hancock, L. E. (2010). Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infection and immunity, 78(11), 4936–4943. https://doi. org/10.1128/IAI.01118-09. | |
dc.relation | Tian, Y., Yu, H. & Wang, Z. (2019). Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC Research Notes,12, 27. https://doi.org/10.1186/s13104-019-4064-z. | |
dc.relation | Tran, T. T., Panesso, D., Gao, H., Roh, J. H., Munita, J. M., Reyes, J., Diaz, L., Lobos, E. A., Shamoo, Y., Mishra, N. N., Bayer, A. S., Murray, B. E., Weinstock, G. M., & Arias, C. A. (2013). Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycinresistant variant arising during therapy. Antimicrobial agents and chemotherapy, 57(1), 261–268. https://doi. org/10.1128/AAC.01454-12. | |
dc.relation | Van Schaik, W., Willems, R.J.L. (2010). Genome-based insights into the evolution of enterococci. Clinical Microbiology and Infection, 16,527–532. doi:10.1111/j.1469- 0691.2010.03201.x. | |
dc.relation | Van Tyne, D., & Gilmore, M. S. (2014). Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Annual review of microbiology, 68, 337–356. https://doi.org/10.1146/annurev-micro-091213113003. | |
dc.relation | Van Tyne, D., & Gilmore, M.S. (2014). Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Annual review of microbiology, 68, 337– 356. https://doi.org/10.1146/annurev-micro-091213113003. | |
dc.relation | Vesi, D., Kristich, C. (2012). JMurAA is required for intrinsic cephalosporin resistance of Enterococcus faecalis. Antimicrobial agents and chemotherapy, 56(5), 2443–2451. https://doi.org/10.1128/AAC.05984-11. | |
dc.relation | Volkers, G., Damas, J.M., Palm, G.J., Panjikar, S., Soares, C.M., Hinrichs, W. (2013). Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline degrading monooxygenase TetX. Acta Crystallographica Section D,69, 1758–67. | |
dc.relation | Wang, J.S., Muzevich, K., Edmond, M.B., Bearman, G., Stevens, M.P. (2014). Central nervous system infections due to vancomycin-resistant enterococci: case series and review of the literature. International Journal of Infectious Diseases, 25.26–31. | |
dc.relation | Wang, Y., Lv, Y., Cai, J., Schwarz, S., Cui, L., Hu, Z., Z., Rong, L., Jun, Z., Qin, H., Tao, W., Dacheng, W., Zheng, S., Yingbo, L., Feßler, A.T., Wu, C., Yu, H., Deng, X., Xia, X., Shen, J. (2015). A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin, Journal of Antimicrobial Chemotherapy, 70(8),2182–2190. https://doi.org/10.1093/jac/dkv116. | |
dc.relation | Weiner, L. M., Webb, A. K., Limbago, B., Dudeck, M. A., Patel, J., Kallen, A. J., Edwards, J. R., & Sievert, D. M. (2016). Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infection control and hospital epidemiology, 37(11), 1288– 1301. https://doi.org/10.1017/ice.2016.174 | |
dc.relation | Xu, X., Lin, D., Yan, G., Ye, X., Wu, S., Guo, Y., Zhu, D., Hu, F., Zhang, Y., Wang, F., Jacoby, G. A., & Wang, M. (2010). vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrobial agents and chemotherapy, 54(11), 4643–4647. https://doi.org/10.1128/AAC.0171009. | |
dc.relation | Yeong Bin Kim, Kwang Won Seo, Hye Young Jeon, Suk-Kyung Lim, Haan Woo Sung, Young Ju Lee. (2019). Molecular characterization of erythromycin and tetracycline-resistant Enterococcus faecalis isolated from retail chicken meats, Poultry Science, 98(2),977-983. | |
dc.relation | You-Han, C., Shang-Yi, L., Yu-Tzu, L., Sung-Pin, T., Chen-Chia, C,Song-Yih, Y., WeiWen, H,, Ya-Ting, J,, Chun-Yu, L,, Yen-Hsu, C., Wei-Chun, H. (2021). Emergence of aac(6)-Ie-aph(2)-Ia-positive enterococci with non-high-level gentamicin resistance mediated by IS1216V: adaptation to decreased aminoglycoside usage in Taiwan, Journal of Antimicrobial Chemotherapy, 76(7),1689–1697, https://doi. org/10.1093/jac/dkab071. | |
dc.relation | .Zhang, T., Muraih, J.K., Mintzer, E., Tishbi, N., Desert, C., Silverman, J., Taylor, S., Palme,r M. (2013). Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB182,462. Biochimica et Biophysica Acta,1828(2),302-8. | |
dc.relation | Zischka, M., Künne, C. T., Blom, J., Wobser, D., Sak nç, T., SchmidtHohagen, K., Dabrowski, P. W., Nitsche, A., Hübner, J., Hain, T., Chakraborty, T., Linke, B., Goesmann, A., Voget, S., Daniel, R., Schomburg, D., Hauck, R., Hafez, H. M., Tielen, P., Jahn, D., Werner, G. (2015). Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40. BMC genomics, 16(1), 175. https://doi.org/10.1186/s12864-015-1367-x | |
dc.relation | Abdullahi, I. N., Lozano, C., Ruiz-Ripa, L., Fernández-Fernández, R., Zarazaga, M., & Torres, C. (2021). Ecology and Genetic Lineages of Nasal Staphylococcus aureus and MRSA Carriage in Healthy Persons with or without Animal-Related Occupational Risks of Colonization: A Review of Global Reports. Pathogens (Basel, Switzerland), 10(8), 1000. | |
dc.relation | Ballhausen, B., Kriegeskorte, A., Schleimer, N., Peters, G., & Becker, K. (2014). The mecA homolog mecC confers resistance against -lactams in Staphylococcus aureus irrespective of the genetic strain background. Antimicrobial agents and chemotherapy, 58(7), 3791–3798. | |
dc.relation | Beam, J.W., Buckley, B. (2006). Community-acquired methicillin-resistant Staphylococcus aureus: prevalence and risk factors. Journal of Athletic Training,; 41, 337-40. | |
dc.relation | Bettin, A., Causil, C., Reyes, N. (2012). Molecular identification and antimicrobial susceptibility of Staphylococcus aureus nasal isolates from medical students in Cartagena, Colombia. Brazilian Journal of Infectious Diseases,16(4),329–334. | |
dc.relation | Castro, R.,Villafañe, L.M., Álvarez, E., Martínez, M., Rambaut, C., Vitola, G. (2010). Methicillin-resistant Staphylococcus aureus in children attending school in Cartagena, Colombia. Salud Pública,12(3),454-463 | |
dc.relation | Chen, C.S., Chen, C.Y., Huang, Y.C. (2012). Nasal carriage rate and molecular epidemiology of methicillin-resistant Staphylococcus aureus among medical students at a Taiwanese university. International Journal of Infectious Diseases, 16, e799–e803. | |
dc.relation | Clinical and Laboratory Standards Institute. (2015). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement.; M100-S25. CLSI, Wayne, PA, USA. | |
dc.relation | Danelli, T., Duarte, F. C., de Oliveira, T. A., da Silva, R. S., Frizon Alfieri, D., Gonçalves, G. B., de Oliveira, C. F., Tavares, E. R., Yamauchi, L. M., Perugini, M., & Yamada-Ogatta, S. F. (2020). Nasal Carriage by Staphylococcus aureus among Healthcare Workers and Students Attending a University Hospital in Southern Brazil: Prevalence, Phenotypic, and Molecular Characteristics. Interdisciplinary perspectives on infectious diseases, 2020, 3808036. | |
dc.relation | Escobar, J. A., Márquez-Ortiz, R. A., Álvarez-Olmos, M. I., Leal, A. L., Castro, B. E., Vanegas, N., & Research Group of Pediatric Infectious Diseases (2013). Detection of a new community genotype methicillin-resistant Staphylococcus aureus clone that is unrelated to the USA300 clone and that causes pediatric infections in Colombia. Journal of clinical microbiology, 51(2), 661–664. | |
dc.relation | Escobar-Pérez, J., Reyes, N., Márquez-Ortiz, R. A., Rebollo, J., Pinzón, H., Tovar, C., Moreno-Castañeda, J., Corredor, Z. L., Castro, B. E., Moncada, M. V., & Vanegas, N. (2017). Emergence and spread of a new communitygenotype methicillinresistant Staphylococcus aureus clone in Colombia. BMC infectious diseases, 17(1), 108. | |
dc.relation | Fergestad, M. E., Stamsås, G. A., Morales Angeles, D., Salehian, Z., Wasteson, Y., & Kjos, M. (2020). Penicillin-binding protein PBP2a provides variable levels of protection toward different -lactams in Staphylococcus aureus RN4220. MicrobiologyOpen, 9(8), e1057. | |
dc.relation | Figueiredo, A. M., & Ferreira, F. A. (2014). The multifaceted resources and microevolution of the successful human and animal pathogen methicillinresistant Staphylococcus aureus. Memorias do Instituto Oswaldo Cruz, 109(3), 265–278. | |
dc.relation | Fortaleza, C.R., Melo, E.C., Fortaleza, C.M.C.B. (2009). Colonización nasal por el Staphylococcus aureus resistente a la meticilina y mortalidad en pacientes de una unidad de terapia intensiva. Revista Latino-Americana de Enfermagem,17(5), www.eerp.usp.br/rlae. | |
dc.relation | Gaona, M.A., Chaparro, D.I., Peña, M.C., Pineda, A.C., Ibáñez, M., Ramírez, G. (2009). Variacion del estado de portador de Staphylococcus aureus en una población de estudiantes de medicina. Revista Ciencias de la Salud, 7(1),37-46. | |
dc.relation | Hawkins, G., Stewart, S., Blatchford, O., Reilly, J. (2011). Should healthcare workers be screened routinely for meticillin-resistant Staphylococcus aureus? A review of the evidence. Journal of Hospital Infection, 77(4),285–9. | |
dc.relation | Hidalgo, M., Carvajal, L. P., Rincón, S., Faccini-Martínez, Á. A., Tres Palacios, A. A., Mercado, M., Palomá, S. L., Rayo, L. X., Acevedo, J. A., Reyes, J., Panesso, D., García-Padilla, P., Álvarez, C., & Arias, C. A. (2015). Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant in Patients Undergoing Hemodialysis and HIV Infected in a Hospital in Bogotá, Colombia. PloS one, 10(10), e0140748. | |
dc.relation | Ito, T., Y. Katayama, K. Asada, N. Mori, K. Tsutsumimoto, C. Tiensasitorn, and K. Hiramatsu. (2001). Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother,45,1323–1336. | |
dc.relation | Kirecci, E., Ozer, A., Ara,l M., Miraloglu, M. A (2010). Research of nasal methicillin resistant/sensitive Staphylococcus aureus and pharyngeal betahaemolytic Streptococcus carriage in midwifery students in Kahramanmaras, Eastern Mediterranean Region of Turkey. Ethiopian Journal of Health Development,24(1),57-60 | |
dc.relation | Kitti, T., Boonyonying, K., Sitthisak, S. (2011). Prevalence of methicillinresistant Staphylococcus aureus among university students in Thailand. Southea Sta Sian. Journal of Tropical Medicine and Public Health, 42(6),1498-1504. | |
dc.relation | López-Aguilera, S., Goñi-Yeste, M.M., Barrado, L., González-RodríguezSalinas, M.C., Otero, J.R., Chaves, F.(2013). Staphylococcus aureus nasal colonization in medical students: Importance in nosocomial transmission. Enfermedades Infecciosas y Microbiología Clínica, 31(8),500–505. | |
dc.relation | Machuca, M. A., Sosa, L. M., & González, C. I. (2013). Molecular typing and virulence characteristic of methicillin-resistant Staphylococcus aureus isolates from pediatric patients in Bucaramanga, Colombia. PloS one, 8(8), e73434. | |
dc.relation | Mahmoud, A. M., Albadawy, H. S., Bolis, S. M., Bilal, N. E., Ahmed, A. O., & Ibrahim, M. E. (2015). Inducible clindamycin resistance and nasal carriage rates of Staphylococcus aureus among healthcare workers and community members. African health sciences, 15(3), 861–867. | |
dc.relation | Martínez-Díaz, H. C., Valderrama-Beltrán, S. L., Hernández, A. C., Pinedo, S. K., Correa, J. R., Ríos, É. G., Rojas, J. J., Hernández, Y. Y., & Hidalgo, M. (2020). Methicillin-resistant Staphylococcus aureus nasal colonization in cardiovascular surgery patients at a university hospital in Bogotá, Colombia. Colonización nasal por Staphylococcus aureus resistente a la meticilina en pacientes sometidos a cirugía cardiovascular en un hospital universitario de Bogotá, Colombia. Biomedica : revista del Instituto Nacional de Salud, 40(Supl. 1), 37–44. | |
dc.relation | Méndez, I.A., HolguÍn-Riaño, D.F., Pachón-Barinas, D.P., Africano, F.J., González, I.M., Rojas, N.A. (2013). Prevalence and antimicrobial susceptibility of Staphylococcus aureus methicilin resistant isolated from medical students. Revista CES de Medicina,27(1),21-30. | |
dc.relation | Oura, J.P., Pimenta, F.C., Hayashida, M., Cruz, E.D.A., Canini, S.R.M.S., Gir, E. (2011). La colonización de los profesionales de enfermería por Staphylococcus aureus. Revista Latino-Americana de Enfermagem, 19(2):08 | |
dc.relation | Popovich, K. J., Green, S. J., Okamoto, K., Rhee, Y., Hayden, M. K., Schoeny, M., Snitkin, E. S., & Weinstein, R. A. (2021). MRSA Transmission in Intensive Care Units: Genomic Analysis of Patients, Their Environments, and Healthcare Workers. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 72(11), 1879–1887. | |
dc.relation | Sakr, A., Brégeon, F., Mège, J. L., Rolain, J. M., & Blin, O. (2018). Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Frontiers in microbiology, 9, 2419. | |
dc.relation | Slifka, K.J., Nettleman, M.D., Dybas, L., Stein, G.E. (2009). Is Acquisition of Methicillin- Resistant Staphylococcus aureus an Occupational Hazard for Medical Students? .Clinical Infectious Diseases,49,482–3. | |
dc.relation | Tokue, Y., Shoji, S., Satoh, K., Watanabe, A., & Motomiya, M. (1992). Comparison of a polymerase chain reaction assay and a conventional microbiologic method for detection of methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy, 36(1), 6–9. | |
dc.relation | Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G., Jr (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews, 28(3), 603–661 | |
dc.relation | Trépanier, P., Tremblay, C., Ruest, A. (2013). Methicillin-resistant Staphylococcus aureus colonization among medical residents. Canadian Journal of Infectious Diseases and Medical Microbiology, 24(2),39-41. | |
dc.relation | Velásquez, L.A., Sánchez, D.M., Hernández, O., González, L., Duque, C. (2010). Colonización por Staphylococcus aureus en una población de pacientes VIH positivos de la ciudad de Medellín: perfil de sensibilidad antimicrobiana y caracterización de la resistencia a la meticilina. Revista NOVA, 8(14), 121-240 | |
dc.relation | Wulf, M., van Nes, A., Eikelenboom-Boskamp, A., de Vries, J., Melchers, W., Klaassen, C., & Voss, A. (2006). Methicillin-resistant Staphylococcus aureus in veterinary doctors and students, the Netherlands. Emerging infectious diseases, 12(12), 1939–1941. | |
dc.relation | Balaban, N.Q., Gerdes, K., Lewis, K., McKinney, J.D (2013). A problem of persistence: still more questions than answers? Nature Reviews Microbiology,11, 587–591 | |
dc.relation | Barbier, F., Andremont, A., Wolff, M., Bouadma, L. (2013). Hospitalacquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Current Opinion in Pulmonary Medicine, 19, 216–228 | |
dc.relation | Bhagirath, A. Y., Li, Y., Somayajula, D., Dadashi, M., Badr, S., & Duan, K. (2016). Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC pulmonary medicine, 16(1), 174. | |
dc.relation | Blanc, D.S., Petignat, C., Moreillon, P., Wenger, A., Bille, J., Francioli, P. (1999). Quantitative antibiogram as a typing method for the prospective epidemiological surveillance and control of MRSA: comparison with molecular typing. Infection Control & Hospital Epidemiology, 17(10),654-69. | |
dc.relation | Breidenstein, E.B., de la Fuente-Núñez, C., Hancock, R. (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends in Microbiology,19,419–426. | |
dc.relation | Clinical and Laboratory Standards Institute (CLSI). (2015). Performance standards for antimicrobial susceptibility testing; 25th informational supplement. CLSI M100-S25 Clinical and Laboratory Standards Institute, Wayne, PA | |
dc.relation | Correa, A., Del Campo, R., Perenguez, M., Blanco, V. M., RodríguezBaños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, M. V. (2015). Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia. Antimicrobial agents and chemotherapy, 59(4), 2421–2425. | |
dc.relation | Correa, A., Montealegre, M. C., Mojica, M. F., Maya, J. J., Rojas, L. J., De La Cadena, E. P., Ruiz, S. J., Recalde, M., Rosso, F., Quinn, J. P., & Villegas, M. V. (2012). First report of a Pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrobial agents and chemotherapy, 56(10), 5422–5423. | |
dc.relation | Cortes, J.A., Leal, A.L., Montañez, A.M., Buitrago, G., Castillo, J.S., Guzman, L. (2013). Frequency of microorganisms isolated in patients with bacteremia in intensive care units in Colombia and their resistance profiles”, Brazilian Journal of Infectious Diseases,17,346–52. | |
dc.relation | Cuzon, G., Naas, T., Villegas, M. V., Correa, A., Quinn, J. P., & Nordmann, P. (2011). Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrobial agents and chemotherapy, 55(11), 5350–5353. | |
dc.relation | Gales, A., Castanheira, M., Jones, R., Sader, H. (2012). Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: Results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010). Diagnostic microbiology and infectious disease,73,354-60. | |
dc.relation | Harris, A. D., Jackson, S. S., Robinson, G., Pineles, L., Leekha, S., Thom, K. A., Wang, Y., Doll, M., Pettigrew, M. M., & Johnson, J. K. (2016). Pseudomonas aeruginosa Colonization in the Intensive Care Unit: Prevalence, Risk Factors, and Clinical Outcomes. Infection control and hospital epidemiology, 37(5), 544–548. | |
dc.relation | Hirsch, E. B., & Tam, V. H. (2010). Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert review of pharmacoeconomics & outcomes research, 10(4), 441–451. | |
dc.relation | Jeong, S.J., Yoon, S.S., Bae, I.K., Jeong, S.H., Kim, J.M., Lee, K. (2014). Risk factors for mortality in patients with bloodstream infections caused by carbapenemresistant Pseudomonas aeruginosa: clinical impact of bacterial virulence and strains on outcome. Diagnostic Microbiology and Infectious Disease,80(2),130-5. | |
dc.relation | Kovaleva, J., Peters, F. T., van der Mei, H. C., & Degener, J. E. (2013). Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clinical microbiology reviews, 26(2), 231–254. | |
dc.relation | Lambert ML, Suetens C, Savey A, Palomar M, Hiesmayr M, Morales I, Agodi A, Frank,U., Mertens, K., Schumacher, M., Wolkewitz, M. (2011). Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. The Lancet Infectious Diseases,11(1),30-8. | |
dc.relation | Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T., Monnet, D.L. (2012). Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection,18, 268–281. | |
dc.relation | Morales, E., Cots, F., Sala, M., Comas, M., Belvis, F., Riu, M., Salvadó, M., Grau, S., Horcajada, J.P., Montero, M.M., Castells, X. (2012). Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Services Research,12,122. | |
dc.relation | Oliver, A., Mulet, X., López-Causapé, C., Juan, C. (2015). The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updates,21–22,41–59. | |
dc.relation | Otter, J., Yezli, S., & French, G. (2011). The Role Played by Contaminated Surfaces in the Transmission of Nosocomial Pathogens. Infection Control & Hospital Epidemiology, 32(7), 687-699. | |
dc.relation | Palleroni, N.J. (2010). The Pseudomonas story. Environ. Microbiol, 12(6),1377-83. | |
dc.relation | Peña, C. Cabot, G. Gómez-Zorrilla, S. Zamorano, L. Ocampo-Sosa, A.. Murillas, J, Spanish Network for Research in Infectious Diseases (REIPI). (2015). Influence of virulence genotype and resistance profile in the mortality of Pseudo | |
dc.relation | Poole, K. (2011). Pseudomonas aeruginosa: resistance to the max. Frontiers in microbiology,2,65. | |
dc.relation | Salvador, G., García, L.R., Gonzales, E. (2018). Characterization of metallolactamase in clinical isolates of Pseudomonas aeruginosa retrieved from patients hospitalized in the Central Military Hospital. Revista Peruana de Medicina Experimental y Salud Pública, 35(4),636-641, | |
dc.relation | Tacconelli, E., Magrini, N., Carmeli, Y., Harbarth, S., Kahlmeter, G., Kluytmans, J., Mendelson, M., Pulcini, C., Singh, N., Theuretzbacher U. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, 1-7. | |
dc.relation | Vanegas, J.M,. Cienfuegos, A.V., Ocampo, A.M., López, L., del Corral, H., Roncancio, G., Sierra, P., Echeverri-Toro, L., Ospina, S., Robledo, N.C., Restrepo, A., Jiménez, N. (2014). Similar Frequencies of Pseudomonas aeruginosa Isolates Producing KPC and VIM Carbapenemases in Diverse Genetic Clones at Tertiary-Care Hospitals in Medellín, Colombia, Journal of Clinical Microbiology, 52(11),3978–3986, | |
dc.relation | Walters, M. S., Grass, J. E., Bulens, S. N., Hancock, E. B., Phipps, E. C., Muleta, D., Mounsey, J., Kainer, M. A., Concannon, C., Dumyati, G., Bower, C., Jacob, J., Cassidy, P. M., Beldavs, Z., Culbreath, K., Phillips, W. E., Jr, Hardy, D. J., Vargas, R. L., Oethinger, M., Ansari, U., … Kallen, A. (2019). Carbapenem-Resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites, 2015. Emerging infectious diseases, 25(7), 1281–1288. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Resistencia | |
dc.subject | Antibióticos | |
dc.subject | Mecanismos | |
dc.subject | Grupo E-ESKAPE | |
dc.subject | Gram negativas | |
dc.subject | Gram positivas | |
dc.subject | Infecciones intrahospitalarias | |
dc.subject | Suelo | |
dc.subject | Aguas | |
dc.subject | Animales | |
dc.subject | Enterococcus faecalis | |
dc.subject | Epidemiología | |
dc.subject | Infecciones asociadas a la atención en salud | |
dc.subject | Staphylococcus aureus resistente a meticilina | |
dc.subject | mecA | |
dc.subject | Estudiantes | |
dc.subject | Patrones de resistencia | |
dc.subject | Variabilidad genética | |
dc.title | Desafíos para enfrentar la resistencia a los antibióticos en bacterias patógenas en el tercer decenio del siglo XXI | |