dc.contributoralzate buitrago, alejandro
dc.creatorOcampo Méndez, David
dc.date.accessioned2024-01-26T23:48:18Z
dc.date.accessioned2024-05-16T21:43:27Z
dc.date.available2024-01-26T23:48:18Z
dc.date.available2024-05-16T21:43:27Z
dc.date.created2024-01-26T23:48:18Z
dc.identifierhttps://hdl.handle.net/10901/28176
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9488512
dc.description.abstractLa prestación de los servicios públicos domiciliarios se constituye en uno de los elementos sustanciales de la planificación territorial y de la gestión del riesgo de desastres. A partir de dicha consideración y en virtud de los impactos y efectos sobre los grupos poblacionales y el desarrollo local, que generaría la suspensión temporal o definitiva de la prestación del servicio de acueducto, los gobiernos locales y regionales, en el marco de las políticas nacionales y la legislación sectorial, deben ejecutar los estudios diagnósticos necesarios e implementar las políticas, estrategias, programas, proyectos y acciones necesarias para garantizar la continuidad de la prestación de los servicios públicos ante la eventual ocurrencia de algún evento de origen natural o antrópico que pueda comprometer la prestación oportuna y eficiente de los mismos. Cabe entonces precisar que las particularidades de cada territorio y las capacidades locales orientarán la respuesta ante los escenarios probables de amenaza/riesgo, reconociendo que cada operador, a partir de sus experiencias y realidades territoriales, reconoce sus fortalezas y limitaciones técnicas, operativas, financieras y administrativas, pero que de igual forma identifica las estrategias y acciones mínimas que le permiten garantizar la prestación de los servicios que opera. El municipio de Mistrató, a través del accionar de su empresa prestadora de servicios públicos, debe velar por la prestación eficiente del sistema de acueducto y garantizar que los niveles de vulnerabilidad (exposición y fragilidad) de cada uno de sus componentes sean bajos/aceptables ante la potencial ocurrencia de amenazas que puedan generar escenarios de riesgo de alta complejidad técnica y financiera.
dc.relationAlam, M. (2019). Decision Support on Risk Reduction Alternatives in Drinking Water Systems A multi-criteria analysis for making risk management decisions. August.
dc.relationAlshamsi, H. (2017). Managing Major Emergencies: Recommendations to develop effective contingency planning in the United Arab Emirates (Issue December)
dc.relationBata, M. T. H., Carriveau, R., & Ting, D. S. K. (2022). Urban water supply systems’ resilience under earthquake scenario. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-23126-8
dc.relationBehzadi, F., Wasti, A., Steissberg, T. E., & Ray, P. A. (2022). Vulnerability assessment of drinking water supply under climate uncertainty using a river contamination risk (RANK) model. Environmental Modelling and Software, 150, 105294. https://doi.org/10.1016/j.envsoft.2021.105294
dc.relationBristow, E., Kanta, L., & Brumbelow, K. (2007). Coupled assessment of water and fire systems damages under attack and disaster scenarios. Examining the Confluence of Environmental and Water Concerns - Proceedings of the World Environmental and Water Resources Congress 2006. https://doi.org/10.1061/40856(200)29
dc.relationBruce, J. P. (1999). Disaster loss mitigation as an adaptation to climate variability and change. Mitigation and Adaptation Strategies for Global Change, 4(3–4), 295–306. https://doi.org/10.1023/a:1009615721957
dc.relationChang, S. E. (2003). Infrastructure Systems. Resilience Engineering, 4(4), 31–42. https://doi.org/10.1017/cbo9781139026772.003
dc.relationChung, A. Q. H. (2014). Emergency Preparedness and Response Planning : A Value-Based Approach to Preparing Coastal Communities for Sea Level Rise. 212.
dc.relationCimellaro, G. P., Tinebra, A., Renschler, C., & Fragiadakis, M. (2016). New Resilience Index for Urban Water Distribution Networks. Journal of Structural Engineering, 142(8), 1–13. https://doi.org/10.1061/(asce)st.1943-541x.0001433
dc.relationEpstein, A. L., & Harding, G. H. (2019). Disaster planning and emergency preparedness. In Clinical Engineering Handbook, Second Edition (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813467-2.00099-7
dc.relationEriksson, K., & McConnell, A. (2011). Contingency planning for crisis management: Recipe for success or political fantasy? Policy and Society, 30(2), 89–99. https://doi.org/10.1016/j.polsoc.2011.03.004
dc.relationGarrick, D., & Hall, J. W. (2014). Water security and society: Risks, metrics, and pathways. Annual Review of Environment and Resources, 39, 611–639. https://doi.org/10.1146/annurev-environ-013012-093817
dc.relationGill, T. (2014). Building Resilience: Social Capital in Post-Disaster Recovery. Social Science Japan Journal, 17(1), 118–122. https://doi.org/10.1093/ssjj/jyt046
dc.relationGonzáles, H. (1993). Mapa Geológico del departamento de Risaralda Geología y recursos Minerales. Bogotá: Ingeominas
dc.relationGrigg, N. S. (2003). Water utility security: Multiple hazards and multiple barriers. Journal of Infrastructure Systems, 9(2), 81–88. https://doi.org/10.1061/(ASCE)1076- 0342(2003)9:2(81)
dc.relationGuikema, S. D. (2009). Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory. Reliability Engineering and System Safety, 94(4), 855–860. https://doi.org/10.1016/j.ress.2008.09.003
dc.relationHartmann, J., van der Aa, M., Wuijts, S., de Roda Husman, A. M., & van der Hoek, J. P. (2018). Risk governance of potential emerging risks to drinking water quality: Analysing current practices. Environmental Science and Policy, 84(February), 97–104. https://doi.org/10.1016/j.envsci.2018.02.01
dc.relationHeegaard, P. E., Helvik, B. E., Trivedi, K. S., & Machida, F. (2015). Survivability as a generalization of recovery. 2015 11th International Conference on the Design of Reliable Communication Networks, DRCN 2015, 133–140. https://doi.org/10.1109/DRCN.2015.7149004
dc.relationKamaludin, T. M., Rusdin, A., Nirmalawati, Fadjar, A., & Wahab, A. (2022). Risk Management in the Development of a Regional Drinking Water Supply System. IOP Conference Series: Earth and Environmental Science, 1075(1). https://doi.org/10.1088/1755-1315/1075/1/012038
dc.relationKaneberg, E. (2018). Emergency preparedness management and civil defence in Sweden : An all-hazards approach for developed countries’ supply chains (Issue 121)
dc.relationLeBlanc, R. M. (2015). Building Resilience: Social Capital in Post-disaster Recovery by Daniel P. Aldrich. The Journal of Japanese Studies, 41(1), 185–189. https://doi.org/10.1353/jjs.2015.0015
dc.relationLi, H., & Uk, A. (2007). Hierarchical Risk Assessment of Water Supply Systems CORE View metadata, citation and similar papers at core. March.
dc.relationLindhe, A., Rosén, L., & Hokstad, P. (2010). Risk evaluation and decision support for drinking water systems. Risk (Quality), 3000(December), 4000.
dc.relationMarques, J. R., & Da Conceição Cunha, M. (2011). Infrastructure management methodologies in risk situations. International Journal of Sustainable Development and Planning, 6(1), 1–12. https://doi.org/10.2495/SDP-V6-N1-1-12
dc.relationMottahedi, A., Sereshki, F., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2021). The resilience of critical infrastructure systems: A systematic literature review. In Energies (Vol. 14, Issue 6). https://doi.org/10.3390/en14061571
dc.relationPagano, A., Giordano, R., Portoghese, I., Fratino, U., & Vurro, M. (2014). A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Natural Hazards, 74(3), 2193–2227. https://doi.org/10.1007/s11069-014-1302-5
dc.relationPagano, A., Pluchinotta, I., Giordano, R., & Vurro, M. (2017). Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study. Sustainable Cities and Society, 28, 435–449. https://doi.org/10.1016/j.scs.2016.09.005
dc.relationRak, J. R., Tchórzewska-Cieślak, B., & Pietrucha-Urbanik, K. (2019). A hazard assessment method for waterworks systems operating in self-government units. International Journal of Environmental Research and Public Health, 16(5), 1–12. https://doi.org/10.3390/ijerph16050767
dc.relationRucka, J. A. N., & Juhanak, T. (2006). Risk Analysis of Water Distribution Systems. 169– 182
dc.relationSathurshan, M., Saja, A., Thamboo, J., Haraguchi, M., & Navaratnam, S. (2022). Resilience of Critical Infrastructure Systems: A Systematic Literature Review of Measurement Frameworks. In Infrastructures (Vol. 7, Issue 5). https://doi.org/10.3390/infrastructures7050067
dc.relationTchórzewska-Cieślak, B., Pietrucha-Urbanik, K., & Eid, M. (2021). Functional safety concept to support hazard assessment and risk management in water-supply systems. Energies, 14(4). https://doi.org/10.3390/en14040947
dc.relationTramullas, J. (2013). Capítulo Iii Marco. Journal of Chemical Information and Modeling, 53(9), 1689–1699. http://virtual.urbe.edu/tesispub/0106891/cap03.pdf
dc.relationTuhov, L., & Ru, J. (2007). Hazard Identification and Risk Analysis. Guidelines for Risk Based Process Safety, 209–242. https://doi.org/10.1002/9780470925119.ch9
dc.relationVassiljev, A., Koppel, T., & Puust, R. (2012). Use of error analysis for calibration of water distribution systems. Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010, 1256–1269. https://doi.org/10.1061/41203(425)113
dc.relationWang, Y., Au, S. K., & Fu, Q. (2010). Seismic risk assessment and mitigation of water supply systems. Earthquake Spectra, 26(1), 257–274. https://doi.org/10.1193/1.3276900
dc.relationWu, D., Wang, H., Mohammed, H., & Seidu, R. (2020). Quality Risk Analysis for Sustainable Smart Water Supply Using Data Perception. IEEE Transactions on Sustainable Computing, 5(3), 377–388. https://doi.org/10.1109/TSUSC.2019.2929953
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectriesgo
dc.subjectacueducto
dc.subjectmistrato
dc.subjectdeslizamiento
dc.titleEvaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda


Este ítem pertenece a la siguiente institución