dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMoroni, Aline de Freitas
dc.date2016-05-19T13:44:08Z
dc.date2016-10-25T21:39:29Z
dc.date2016-05-19T13:44:08Z
dc.date2016-10-25T21:39:29Z
dc.date2016-04-20
dc.date.accessioned2017-04-06T10:28:41Z
dc.date.available2017-04-06T10:28:41Z
dc.identifierhttp://hdl.handle.net/11449/138633
dc.identifierhttp://acervodigital.unesp.br/handle/11449/138633
dc.identifier000870594
dc.identifier33004137065P9
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/948850
dc.descriptionNeste trabalho pretendemos descrever o processo de construção da álgebra dos quatérnios, e a interpretação da multiplicação desses objetos via rotações no espaço. Para isto, vimos a necessidade de iniciar com conceitos que formam a base da álgebra, listando axiomas para o sistema de números reais e complexos.
dc.descriptionThe aim of this work is to describe the construction of the quaternion algebra and to interpret the multiplication operation via tridimensional rotations. For that we begin with basic algebraic concepts, and we list the axioms for the real and complex number systems.
dc.languagepor
dc.publisherUniversidade Estadual Paulista (UNESP)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectÁlgebra
dc.subjectMatriz de rotação
dc.subjectNúmeros reais
dc.subjectRotation matrix
dc.subjectReal numbers
dc.titleRotações no espaço tridimensional por meio de produtos quaterniônicos
dc.typeOtro


Este ítem pertenece a la siguiente institución