dc.contributorMancilla, Edwin
dc.creatorDíaz Valencia, Joan Sebastián
dc.creatorDuque Duque, Nicolas
dc.date.accessioned2024-01-23T19:20:13Z
dc.date.accessioned2024-05-16T21:42:44Z
dc.date.available2024-01-23T19:20:13Z
dc.date.available2024-05-16T21:42:44Z
dc.date.created2024-01-23T19:20:13Z
dc.identifierhttps://hdl.handle.net/10901/28027
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9488486
dc.description.abstractEn la actualidad, surge una creciente necesidad de utilizar materiales en la industria de la construcción que se ajusten a las exigencias económicas y medioambientales de cada población. Esta investigación se centró en determinar el porcentaje óptimo de humedad y cemento que permitiría que una mezcla de suelo-cemento alcanzara la resistencia a compresión uniaxial mínima requerida para un ladrillo macizo, según la norma técnica colombiana (NTC 4205). Para llevar a cabo el estudio, se recolectó suelo en la zona urbana del municipio de Pereira. Este suelo fue sometido a pruebas de límites de Atterberg, granulometría, proctor modificado y contenido de materia orgánica, lo que permitió clasificarlo como un limo de alta plasticidad (MH). Posteriormente, se compactaron cilindros con el suelo en su estado natural y su humedad óptima, creando así una muestra estándar para la investigación. Luego, se procedió a mezclar el suelo con diferentes proporciones de cemento Portland, variando del 2% al 30%, con el objetivo de observar cómo afectaban estas dosificaciones a las propiedades de la mezcla. Posteriormente se llevaron a cabo pruebas de densidad, pulso de velocidad ultrasónica (UPV) y resistencia a compresión encofinada. Los resultados mostraron que la resistencia a compresión para la muestra estándar fue de 0.39 MPa, estableciendo así la base de la resistencia del suelo caracterizado. Sin embargo, al someter todos los cilindros a ensayos de compresión inconfinada, se encontró que aquellos con un 30% de cemento en la mezcla resistieron 1.48 MPa, demostrando ser los más resistentes. A pesar de este incremento, se concluyó que ninguna de las dosificaciones logró alcanzar el umbral mínimo establecido por la Norma.
dc.relationAmerican Society for Testing and Materials (2002). Standard Test Method for Ultrasonic Pulse Velocity Through Concrete (ASTM C 597-02).
dc.relationAubert, J. E., Maillard, P., Morel, J. C., & Al Rafii, M. (2016). Towards a simple compressive strength test for earth bricks?. Materials and Structures, 49, 1641-1654. DOI:10.1617/s11527-015-0601-y
dc.relationArdouz, G., Baba, K., El Bouanani, L., Latifi, F. E., & Dardouch, A. (2022). The Influence of the Fundamental Parameters on the Mechanical Behavior of Coarse-Grained Soils. Civil Engineering Journal, 8(8), 1694-1711.DOI: 10.28991/cej-2022-08-08-012
dc.relationBanakinao, S., Drovou, S., & Attipou, K. (2022). Influence of Cement Dose on the Durability of Structures in Stabilized Compressed Earth Blocks. International Journal of Sustainable Construction Engineering and Technology, 13(1), 121-129
dc.relationBestraten Castells, S. C., Hormias Laperal, E., & Altemir Montaner, A. (2011). Construcción con tierra en el siglo XXI. Informes de la Construcción, 63(523), 5-20. DOI10.3989/ic.10.046
dc.relationBrahim, M., Ndiaye, K., Aggoun, S., & Maherzi, W. (2022). Valorization of Dredged Sediments in Manufacturing Compressed Earth Blocks Stabilized by Alkali-Activated Fly Ash Binder. Buildings, 12(4), 419.
dc.relationChagas, L. S. V. B., Bezerra, U. T., & Barbosa, N. P. (2014). Blocks for Performance of Masonry Using PET Bottle Seal: Thermal, acoustic, and Mechanical and evaluation. Key Engineering Materials, 600, 753-767. https://doi.org/10.4028/www.scientific.net/KEM.600.753
dc.relationChin, W. Q., Lee, Y. H., Amran, M., Fediuk, R., Vatin, N., Kueh, A. B. H., & Lee, Y. Y. (2022). A sustainable reuse of agro-industrial wastes into green cement bricks. Materials, 15(5), 1713. DOI: 10.3390/ma15051713
dc.relationDabakuyo, I., Mutuku, R. N., & Onchiri, R. O. (2022). Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer. Civil Engineering Journal, 8(04).
dc.relationDietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1), 175-179. DOI: 10.1073/pnas.94.1.175
dc.relationFiroozi, A. A., Guney Olgun, C., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, 1-16. DOI: 10.1186/s40703-017-0064-9
dc.relationGalán-Marín, C., Rivera-Gómez, C., & Petric, J. (2010). Clay-based composite stabilized with natural polymer and fibre. Construction and Building Materials, 24(8), 1462-1468. DOI: 10.1016/j.conbuildmat.2010.01.008
dc.relationGao, J., Tang, X., Ren, H., & Cai, W. (2019). Evolution of the Construction Industry in China from the Perspectives of the Driving and Driven Ability. Sustainability, 11(6), 1772. DOI: 10.3390/su11061772
dc.relationHaque, M. S., & Islam, S. (2021). Effectiveness of waste plastic bottles as construction material in Rohingya displacement camps. Cleaner Engineering and Technology, 3, 100110.
dc.relationHernandez, V., Botero Botero, L. F., & Carvajal Arango, D. (1794). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. ing. cienc.[online]. 2015, vol. 11, n. 21. ISSN, 9165, 197-220. doi:10.17230/ingciencia.11.21.10
dc.relationHolmes, C., McDonald, F., Jones, M., Ozdemir, V., & Graham, J. E. (2010). Standardization and omics science: technical and social dimensions are inseparable and demand symmetrical study. OMICS: A Journal of Integrative Biology, 14(3), 327-332. DOI: 10.1089/omi.2010.0022
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (1999). Método de ensayo para la determinación del límite líquido, del límite plástico y del índice de plasticidad de los suelos cohesivos.. (NTC 4630).
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (2000). Método de ensayo para determinar la resistencia a la compresión inconfiada de suelos cohesivos. (NTC 1527).
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (2009).Unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 2: mampostería no estructural. (NTC 4205).
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (2018). Especificaciones de los agregados para concreto. (NTC 174).
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (2019). Método de ensayo para determinar el contenido total de humedad evaporable por secado de los agregados. (NTC 1776)
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (2021). Determinación de Materia Orgánica. (NTC 5403).
dc.relationInstituto Colombiano de Normas Técnicas y Certificación. (2021). Requisitos para la seguridad en la industria de la construcción (NTC 77)
dc.relationKassim, U., Shuaib, N. A., Nasir, Z., Sulaiman, I., & Razak, S. M. (2021, July). Sustainable brick plastic recycle. In AIP Conference Proceedings (Vol. 2347, No. 1). AIP Publishing.
dc.relationKEBAILI, N., & YOUCEF, K. (2017). Attitudes toward earthen architecture: the case of compressed and stabilized earth block architecture in Auroville, India. WIT Transactions on Ecology and the Environment, 226, 761-772. DOI: 10.2495/sdp170661
dc.relationKeesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land, 7(4), 133. DOI: 10.3390/land7040133
dc.relationLaborel-Préneron, A., Aubert, J. E., Magniont, C., Tribout, C., & Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and building materials, 111, 719-734. DOI: 10.1016/j.conbuildmat.2016.02.119
dc.relationLan, G., Chao, S., Wang, Y., & Zhang, K. (2021). Study of compressive strength test methods for earth block masonry—Capping method and loading mode. Journal of Building Engineering, 43, 103094. https://doi.org/10.1016/j.jobe.2021.103094
dc.relationLehmann, A., Zheng, W., & Rillig, M. C. (2017). Soil biota contributions to soil aggregation. Nature Ecology & Evolution, 1(12), 1828-1835. DOI: 10.1038/s41559-017-0344-y
dc.relationLi, J., Du, J., Zhong, S., Ci, E., & Wei, C. (2021). Changes in the profile properties and chemical weathering characteristics of cultivated soils affected by anthropic activities. Scientific Reports, 11(1), 20822. DOI: 10.1038/s41598-021-00302-w
dc.relationLi, Y., Zhao, C., & Lu, Q. (2023). Preparation of Phase Change Concrete Using Environmentally Friendly Materials and Its Performance Study. Journal of Renewable Materials, 11(5). DOI: 10.32604/jrm.2023.025443
dc.relationMak, S. L., Wu, T. M. Y., Tang, F. W. F., Li, J. C. H., & Lai, C. W. (2021, March). A review on utilization of plastic wastes in making construction bricks. In IOP Conference series: Earth and environmental science (Vol. 706, No. 1, p. 012001). IOP Publishing. doi:10.1088/1755-1315/706/1/012001
dc.relationMagnusson, S., Lundberg, K., Svedberg, B., & Knutsson, S. (2015). Sustainable management of excavated soil and rock in urban areas–a literature review. Journal of Cleaner Production, 93, 18-25.DOI: 10.1016/j.jclepro.2015.01.010
dc.relationMarut, J. J., Alaezi, J. O., & Igwe, C. O. (2020). A review of alternative building materials for sustainable construction towards sustainable development. DOI: 10.21467/jmm.7.1.68-78
dc.relationMeegoda, J. N. (2011). Production of segmental retaining wall units from recycled mixed glass and plastic. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 1335-1344). https://doi.org/10.1061/41165(397)137
dc.relationMeza-Ochoa, V., Morales, Á. L., & Márquez-Godoy, M. A. (2023). Mineralogical analysis of a residual soil from Medellín Dunite (Colombia) and its influence on physical properties and unsaturated undrained shear strength. Boletín de Geología, 45(1), 87-101. DOI: 10.18273/revbol.v45n1-2023004
dc.relationMorel, J. C., Pkla, A., & Walker, P. (2007). Compressive strength testing of compressed earth blocks. Construction and Building materials, 21(2), 303-309. DOI: 10.1016/j.conbuildmat.2005.08.021
dc.relationNavarro, I. J., Yepes, V., & Martí, J. V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845. DOI: 10.3390/su10030845
dc.relationNshimiyimana, P., Messan, A., & Courard, L. (2020). Physico-mechanical and hygro-thermal properties of compressed earth blocks stabilized with industrial and agro by-product binders. Materials, 13(17), 3769. DOI: 10.3390/ma13173769
dc.relationOuellet-Plamondon, C. M., & Habert, G. (2016). Self-compacted clay based concrete (SCCC): proof-of-concept. Journal of Cleaner Production, 117, 160-168. DOI: 10.1016/j.jclepro.2015.12.048
dc.relationPacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and building materials, 29, 512-519. DOI: 10.1016/j.conbuildmat.2011.10.054
dc.relationParashar, A. K., & Parashar, R. (2012). Comparative study of compressive strength of bricks made with various materials to clay bricks. International journal of scientific and research publications, 2(7), 1-4.
dc.relationRajput, A., & Sharma, T. (2023, February). Stabilization of CSEBs with the addition of industrial and agricultural wastes. In IOP Conference Series: Earth and Environmental Science (Vol. 1110, No. 1, p. 012004). IOP Publishing. DOI: 10.1088/1755-1315/1110/1/012004
dc.relationRibeiro, D., Néri, R., & Cardoso, R. (2016). Influence of water content in the UCS of soil-cement mixtures for different cement dosages. Procedia engineering, 143, 59-66. DOI: 10.1016/j.proeng.2016.06.008
dc.relationRiad, B., & Zhang, X. (2022). Characterizing and modeling the coupled hydro-mechanical cyclic behavior of unsaturated soils using constant water content oedometer and direct shear tests. Transportation Research Record, 2676(10), 173-193.DOI: 10.1177/03611981221088775
dc.relationSchmidt, M., Gonda, R., & Transiskus, S. (2021). Environmental degradation at Lake Urmia (Iran): exploring the causes and their impacts on rural livelihoods. GeoJournal, 86, 2149-2163. DOI: 10.1007/s10708-020-10180-w
dc.relationSchneider, M., Tripod, S., Houdmont, L. T., & Belis, J. (2019, July). Experimental design and building of a cable reinforced plastic brick arch. In Fourth International Conference on Structures and Architecture (ICSA 2019) (pp. 1099-1106). CRC. https://www.researchgate.net/publication/337292514_Experimental_Design_and_Building_of_a_Cable_Reinforced_Plastic_Brick_Arch
dc.relationShen, L., Yang, J., Zhang, R., Shao, C., & Song, X. (2019). The benefits and barriers for promoting bamboo as a green building material in China—An integrative analysis. Sustainability, 11(9), 2493. DOI: 10.3390/su11092493
dc.relationSuzuki, M., Shimura, N., Fukumura, T., Yoneda, O., & Tasaka, Y. (2015). Seismic performance of reinforced soil wall with untreated and cement-treated soils as backfill using a 1-g shaking table. Soils and Foundations, 55(3), 626-636. DOI: 10.1016/j.sandf.2015.04.013
dc.relationSymon, G., Cassell, C., & Johnson, P. (2018). Evaluative practices in qualitative management research: A critical review. International Journal of Management Reviews, 20(1), 134-154. DOI: 10.1111/ijmr.12120
dc.relationYadav, A., Chandra, A., & Singh, S. (2022). Study on application of waste plastic in the construction industry. Materials Today: Proceedings, 64, 1455-1458. https://doi.org/10.1016/j.matpr.2022.04.743
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectEnsayo
dc.subjectHumedad Óptima
dc.subjectMezcla
dc.subjectResistencia
dc.subjectSuelo
dc.titleOptimización de mezcla suelo-cemento: buscando el porcentaje óptimo de humedad y cemento, cumpliendo la Norma Técnica Colombiana NTC 4205


Este ítem pertenece a la siguiente institución