dc.contributor | Mancilla, Edwin | |
dc.creator | Díaz Valencia, Joan Sebastián | |
dc.creator | Duque Duque, Nicolas | |
dc.date.accessioned | 2024-01-23T19:20:13Z | |
dc.date.accessioned | 2024-05-16T21:42:44Z | |
dc.date.available | 2024-01-23T19:20:13Z | |
dc.date.available | 2024-05-16T21:42:44Z | |
dc.date.created | 2024-01-23T19:20:13Z | |
dc.identifier | https://hdl.handle.net/10901/28027 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9488486 | |
dc.description.abstract | En la actualidad, surge una creciente necesidad de utilizar materiales en la industria de la construcción que se ajusten a las exigencias económicas y medioambientales de cada población. Esta investigación se centró en determinar el porcentaje óptimo de humedad y cemento que permitiría que una mezcla de suelo-cemento alcanzara la resistencia a compresión uniaxial mínima requerida para un ladrillo macizo, según la norma técnica colombiana (NTC 4205). Para llevar a cabo el estudio, se recolectó suelo en la zona urbana del municipio de Pereira. Este suelo fue sometido a pruebas de límites de Atterberg, granulometría, proctor modificado y contenido de materia orgánica, lo que permitió clasificarlo como un limo de alta plasticidad (MH). Posteriormente, se compactaron cilindros con el suelo en su estado natural y su humedad óptima, creando así una muestra estándar para la investigación. Luego, se procedió a mezclar el suelo con diferentes proporciones de cemento Portland, variando del 2% al 30%, con el objetivo de observar cómo afectaban estas dosificaciones a las propiedades de la mezcla. Posteriormente se llevaron a cabo pruebas de densidad, pulso de velocidad ultrasónica (UPV) y resistencia a compresión encofinada. Los resultados mostraron que la resistencia a compresión para la muestra estándar fue de 0.39 MPa, estableciendo así la base de la resistencia del suelo caracterizado. Sin embargo, al someter todos los cilindros a ensayos de compresión inconfinada, se encontró que aquellos con un 30% de cemento en la mezcla resistieron 1.48 MPa, demostrando ser los más resistentes. A pesar de este incremento, se concluyó que ninguna de las dosificaciones logró alcanzar el umbral mínimo establecido por la Norma. | |
dc.relation | American Society for Testing and Materials (2002). Standard Test Method for Ultrasonic Pulse Velocity Through Concrete (ASTM C 597-02). | |
dc.relation | Aubert, J. E., Maillard, P., Morel, J. C., & Al Rafii, M. (2016). Towards a simple compressive strength test for earth bricks?. Materials and Structures, 49, 1641-1654. DOI:10.1617/s11527-015-0601-y | |
dc.relation | Ardouz, G., Baba, K., El Bouanani, L., Latifi, F. E., & Dardouch, A. (2022). The Influence of the Fundamental Parameters on the Mechanical Behavior of Coarse-Grained Soils. Civil Engineering Journal, 8(8), 1694-1711.DOI: 10.28991/cej-2022-08-08-012 | |
dc.relation | Banakinao, S., Drovou, S., & Attipou, K. (2022). Influence of Cement Dose on the Durability of Structures in Stabilized Compressed Earth Blocks. International Journal of Sustainable Construction Engineering and Technology, 13(1), 121-129 | |
dc.relation | Bestraten Castells, S. C., Hormias Laperal, E., & Altemir Montaner, A. (2011). Construcción con tierra en el siglo XXI. Informes de la Construcción, 63(523), 5-20. DOI10.3989/ic.10.046 | |
dc.relation | Brahim, M., Ndiaye, K., Aggoun, S., & Maherzi, W. (2022). Valorization of Dredged Sediments in Manufacturing Compressed Earth Blocks Stabilized by Alkali-Activated Fly Ash Binder. Buildings, 12(4), 419. | |
dc.relation | Chagas, L. S. V. B., Bezerra, U. T., & Barbosa, N. P. (2014). Blocks for Performance of Masonry Using PET Bottle Seal: Thermal, acoustic, and Mechanical and evaluation. Key Engineering Materials, 600, 753-767. https://doi.org/10.4028/www.scientific.net/KEM.600.753 | |
dc.relation | Chin, W. Q., Lee, Y. H., Amran, M., Fediuk, R., Vatin, N., Kueh, A. B. H., & Lee, Y. Y. (2022). A sustainable reuse of agro-industrial wastes into green cement bricks. Materials, 15(5), 1713. DOI: 10.3390/ma15051713 | |
dc.relation | Dabakuyo, I., Mutuku, R. N., & Onchiri, R. O. (2022). Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer. Civil Engineering Journal, 8(04). | |
dc.relation | Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1), 175-179. DOI: 10.1073/pnas.94.1.175 | |
dc.relation | Firoozi, A. A., Guney Olgun, C., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, 1-16. DOI: 10.1186/s40703-017-0064-9 | |
dc.relation | Galán-Marín, C., Rivera-Gómez, C., & Petric, J. (2010). Clay-based composite stabilized with natural polymer and fibre. Construction and Building Materials, 24(8), 1462-1468. DOI: 10.1016/j.conbuildmat.2010.01.008 | |
dc.relation | Gao, J., Tang, X., Ren, H., & Cai, W. (2019). Evolution of the Construction Industry in China from the Perspectives of the Driving and Driven Ability. Sustainability, 11(6), 1772. DOI: 10.3390/su11061772 | |
dc.relation | Haque, M. S., & Islam, S. (2021). Effectiveness of waste plastic bottles as construction material in Rohingya displacement camps. Cleaner Engineering and Technology, 3, 100110. | |
dc.relation | Hernandez, V., Botero Botero, L. F., & Carvajal Arango, D. (1794). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. ing. cienc.[online]. 2015, vol. 11, n. 21. ISSN, 9165, 197-220. doi:10.17230/ingciencia.11.21.10 | |
dc.relation | Holmes, C., McDonald, F., Jones, M., Ozdemir, V., & Graham, J. E. (2010). Standardization and omics science: technical and social dimensions are inseparable and demand symmetrical study. OMICS: A Journal of Integrative Biology, 14(3), 327-332. DOI: 10.1089/omi.2010.0022 | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (1999). Método de ensayo para la determinación del límite líquido, del límite plástico y del índice de plasticidad de los suelos cohesivos.. (NTC 4630). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (2000). Método de ensayo para determinar la resistencia a la compresión inconfiada de suelos cohesivos. (NTC 1527). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (2009).Unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 2: mampostería no estructural. (NTC 4205). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (2018). Especificaciones de los agregados para concreto. (NTC 174). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (2019). Método de ensayo para determinar el contenido total de humedad evaporable por secado de los agregados. (NTC 1776) | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (2021). Determinación de Materia Orgánica. (NTC 5403). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación. (2021). Requisitos para la seguridad en la industria de la construcción (NTC 77) | |
dc.relation | Kassim, U., Shuaib, N. A., Nasir, Z., Sulaiman, I., & Razak, S. M. (2021, July). Sustainable brick plastic recycle. In AIP Conference Proceedings (Vol. 2347, No. 1). AIP Publishing. | |
dc.relation | KEBAILI, N., & YOUCEF, K. (2017). Attitudes toward earthen architecture: the case of compressed and stabilized earth block architecture in Auroville, India. WIT Transactions on Ecology and the Environment, 226, 761-772. DOI: 10.2495/sdp170661 | |
dc.relation | Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land, 7(4), 133. DOI: 10.3390/land7040133 | |
dc.relation | Laborel-Préneron, A., Aubert, J. E., Magniont, C., Tribout, C., & Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and building materials, 111, 719-734. DOI: 10.1016/j.conbuildmat.2016.02.119 | |
dc.relation | Lan, G., Chao, S., Wang, Y., & Zhang, K. (2021). Study of compressive strength test methods for earth block masonry—Capping method and loading mode. Journal of Building Engineering, 43, 103094. https://doi.org/10.1016/j.jobe.2021.103094 | |
dc.relation | Lehmann, A., Zheng, W., & Rillig, M. C. (2017). Soil biota contributions to soil aggregation. Nature Ecology & Evolution, 1(12), 1828-1835. DOI: 10.1038/s41559-017-0344-y | |
dc.relation | Li, J., Du, J., Zhong, S., Ci, E., & Wei, C. (2021). Changes in the profile properties and chemical weathering characteristics of cultivated soils affected by anthropic activities. Scientific Reports, 11(1), 20822. DOI: 10.1038/s41598-021-00302-w | |
dc.relation | Li, Y., Zhao, C., & Lu, Q. (2023). Preparation of Phase Change Concrete Using Environmentally Friendly Materials and Its Performance Study. Journal of Renewable Materials, 11(5). DOI: 10.32604/jrm.2023.025443 | |
dc.relation | Mak, S. L., Wu, T. M. Y., Tang, F. W. F., Li, J. C. H., & Lai, C. W. (2021, March). A review on utilization of plastic wastes in making construction bricks. In IOP Conference series: Earth and environmental science (Vol. 706, No. 1, p. 012001). IOP Publishing. doi:10.1088/1755-1315/706/1/012001 | |
dc.relation | Magnusson, S., Lundberg, K., Svedberg, B., & Knutsson, S. (2015). Sustainable management of excavated soil and rock in urban areas–a literature review. Journal of Cleaner Production, 93, 18-25.DOI: 10.1016/j.jclepro.2015.01.010 | |
dc.relation | Marut, J. J., Alaezi, J. O., & Igwe, C. O. (2020). A review of alternative building materials for sustainable construction towards sustainable development. DOI: 10.21467/jmm.7.1.68-78 | |
dc.relation | Meegoda, J. N. (2011). Production of segmental retaining wall units from recycled mixed glass and plastic. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 1335-1344). https://doi.org/10.1061/41165(397)137 | |
dc.relation | Meza-Ochoa, V., Morales, Á. L., & Márquez-Godoy, M. A. (2023). Mineralogical analysis of a residual soil from Medellín Dunite (Colombia) and its influence on physical properties and unsaturated undrained shear strength. Boletín de Geología, 45(1), 87-101. DOI: 10.18273/revbol.v45n1-2023004 | |
dc.relation | Morel, J. C., Pkla, A., & Walker, P. (2007). Compressive strength testing of compressed earth blocks. Construction and Building materials, 21(2), 303-309. DOI: 10.1016/j.conbuildmat.2005.08.021 | |
dc.relation | Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845. DOI: 10.3390/su10030845 | |
dc.relation | Nshimiyimana, P., Messan, A., & Courard, L. (2020). Physico-mechanical and hygro-thermal properties of compressed earth blocks stabilized with industrial and agro by-product binders. Materials, 13(17), 3769. DOI: 10.3390/ma13173769 | |
dc.relation | Ouellet-Plamondon, C. M., & Habert, G. (2016). Self-compacted clay based concrete (SCCC): proof-of-concept. Journal of Cleaner Production, 117, 160-168. DOI: 10.1016/j.jclepro.2015.12.048 | |
dc.relation | Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and building materials, 29, 512-519. DOI: 10.1016/j.conbuildmat.2011.10.054 | |
dc.relation | Parashar, A. K., & Parashar, R. (2012). Comparative study of compressive strength of bricks made with various materials to clay bricks. International journal of scientific and research publications, 2(7), 1-4. | |
dc.relation | Rajput, A., & Sharma, T. (2023, February). Stabilization of CSEBs with the addition of industrial and agricultural wastes. In IOP Conference Series: Earth and Environmental Science (Vol. 1110, No. 1, p. 012004). IOP Publishing. DOI: 10.1088/1755-1315/1110/1/012004 | |
dc.relation | Ribeiro, D., Néri, R., & Cardoso, R. (2016). Influence of water content in the UCS of soil-cement mixtures for different cement dosages. Procedia engineering, 143, 59-66. DOI: 10.1016/j.proeng.2016.06.008 | |
dc.relation | Riad, B., & Zhang, X. (2022). Characterizing and modeling the coupled hydro-mechanical cyclic behavior of unsaturated soils using constant water content oedometer and direct shear tests. Transportation Research Record, 2676(10), 173-193.DOI: 10.1177/03611981221088775 | |
dc.relation | Schmidt, M., Gonda, R., & Transiskus, S. (2021). Environmental degradation at Lake Urmia (Iran): exploring the causes and their impacts on rural livelihoods. GeoJournal, 86, 2149-2163. DOI: 10.1007/s10708-020-10180-w | |
dc.relation | Schneider, M., Tripod, S., Houdmont, L. T., & Belis, J. (2019, July). Experimental design and building of a cable reinforced plastic brick arch. In Fourth International Conference on Structures and Architecture (ICSA 2019) (pp. 1099-1106). CRC. https://www.researchgate.net/publication/337292514_Experimental_Design_and_Building_of_a_Cable_Reinforced_Plastic_Brick_Arch | |
dc.relation | Shen, L., Yang, J., Zhang, R., Shao, C., & Song, X. (2019). The benefits and barriers for promoting bamboo as a green building material in China—An integrative analysis. Sustainability, 11(9), 2493. DOI: 10.3390/su11092493 | |
dc.relation | Suzuki, M., Shimura, N., Fukumura, T., Yoneda, O., & Tasaka, Y. (2015). Seismic performance of reinforced soil wall with untreated and cement-treated soils as backfill using a 1-g shaking table. Soils and Foundations, 55(3), 626-636. DOI: 10.1016/j.sandf.2015.04.013 | |
dc.relation | Symon, G., Cassell, C., & Johnson, P. (2018). Evaluative practices in qualitative management research: A critical review. International Journal of Management Reviews, 20(1), 134-154. DOI: 10.1111/ijmr.12120 | |
dc.relation | Yadav, A., Chandra, A., & Singh, S. (2022). Study on application of waste plastic in the construction industry. Materials Today: Proceedings, 64, 1455-1458. https://doi.org/10.1016/j.matpr.2022.04.743 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Ensayo | |
dc.subject | Humedad Óptima | |
dc.subject | Mezcla | |
dc.subject | Resistencia | |
dc.subject | Suelo | |
dc.title | Optimización de mezcla suelo-cemento: buscando el porcentaje óptimo de humedad y cemento, cumpliendo la Norma Técnica Colombiana NTC 4205 | |