dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBoratto, Miguel Henrique
dc.creatorScalvi, Luis Vicente de Andrade
dc.creatorMachado, Diego Henrique O.
dc.date2016-03-02T13:03:32Z
dc.date2016-10-25T21:33:04Z
dc.date2016-03-02T13:03:32Z
dc.date2016-10-25T21:33:04Z
dc.date2014
dc.date.accessioned2017-04-06T10:05:48Z
dc.date.available2017-04-06T10:05:48Z
dc.identifierAdvanced Materials Research, v. 975, p. 248-253, 2014.
dc.identifier1662-8985
dc.identifierhttp://hdl.handle.net/11449/135610
dc.identifierhttp://acervodigital.unesp.br/handle/11449/135610
dc.identifier10.4028/www.scientific.net/AMR.975.248
dc.identifier7730719476451232
dc.identifierhttp://dx.doi.org/10.4028/www.scientific.net/AMR.975.248
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/946116
dc.descriptionAlumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550°C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.
dc.languageeng
dc.relationAdvanced Materials Research
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAlumina
dc.subjectOxidation
dc.subjectResistive evaporation
dc.subjectThermal annealing
dc.titleAl2O3 Obtained through resistive evaporation for use as insulating layer in transparent field effect transistor
dc.typeOtro


Este ítem pertenece a la siguiente institución