dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorde, Helenice
dc.creatorSales, Roberto M.
dc.date2014-05-27T11:18:10Z
dc.date2016-10-25T21:21:22Z
dc.date2014-05-27T11:18:10Z
dc.date2016-10-25T21:21:22Z
dc.date1997-01-01
dc.date.accessioned2017-04-06T09:22:39Z
dc.date.available2017-04-06T09:22:39Z
dc.identifierProceedings of the American Control Conference, v. 5, p. 3521-3525.
dc.identifier0743-1619
dc.identifierhttp://hdl.handle.net/11449/130522
dc.identifierhttp://acervodigital.unesp.br/handle/11449/130522
dc.identifier10.1109/ACC.1997.612123
dc.identifierWOS:A1997BJ29B00755
dc.identifierhttp://dx.doi.org/10.1109/ACC.1997.612123
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/941065
dc.descriptionIn this work a Nonzero-Sum NASH game related to the H2 and H∞ control problems is formulated in the context of convex optimization theory. The variables of the game are limiting bounds for the H2 and H∞ norms, and the final controller is obtained as an equilibrium solution, which minimizes the `sensitivity of each norm' with respect to the other. The state feedback problem is considered and illustrated by numerical examples.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relationProceedings of the American Control Conference
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFeedback
dc.subjectGame theory
dc.subjectOptimization
dc.subjectProblem solving
dc.subjectConvex optimization problem
dc.subjectOptimal control systems
dc.titleNASH game and mixed H2/H∞ control
dc.typeOtro


Este ítem pertenece a la siguiente institución