dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorPinto, Tiago W.
dc.creatorCarvalho, Marco A. G. de
dc.creatorPedronette, Daniel C. G.
dc.creatorMartins, Paulo S.
dc.creatorIEEE
dc.date2015-11-03T15:28:55Z
dc.date2016-10-25T21:17:07Z
dc.date2015-11-03T15:28:55Z
dc.date2016-10-25T21:17:07Z
dc.date2014-01-01
dc.date.accessioned2017-04-06T09:17:33Z
dc.date.available2017-04-06T09:17:33Z
dc.identifier2014 Ieee Southwest Symposium On Image Analysis And Interpretation (ssiai 2014). New York: Ieee, p. 153-156, 2014.
dc.identifier1550-5782
dc.identifierhttp://hdl.handle.net/11449/130056
dc.identifierhttp://acervodigital.unesp.br/handle/11449/130056
dc.identifierWOS:000355255900038
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6806052&tag=1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/940607
dc.descriptionResearch on image processing has shown that combining segmentation methods may lead to a solid approach to extract semantic information from different sort of images. Within this context, the Normalized Cut (NCut) is usually used as a final partitioning tool for graphs modeled in some chosen method. This work explores the Watershed Transform as a modeling tool, using different criteria of the hierarchical Watershed to convert an image into an adjacency graph. The Watershed is combined with an unsupervised distance learning step that redistributes the graph weights and redefines the Similarity matrix, before the final segmentation step using NCut. Adopting the Berkeley Segmentation Data Set and Benchmark as a background, our goal is to compare the results obtained for this method with previous work to validate its performance.
dc.languageeng
dc.publisherIeee
dc.relation2014 Ieee Southwest Symposium On Image Analysis And Interpretation (ssiai 2014)
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectImage segmentation
dc.subjectWatershed transform
dc.subjectGraph partitioning
dc.subjectNormalized cut
dc.subjectUnsupervised distance learning
dc.titleImage segmentation through combined methods: watershed transform, unsupervised distance learning and normalized cut
dc.typeOtro


Este ítem pertenece a la siguiente institución