dc.creatorRivas Villegas, Danny
dc.creatorRivero Alzamora, Cristina
dc.creatorCarrera Osorio, César
dc.creatorCalderón Ramírez, Luis
dc.creatorRojas Correa, Liliana
dc.creatorNarrea Cáceres
dc.creatorSánchez Palacios, José
dc.creatorDel Carpio Franco, Carlos
dc.creatorVásquez Grados, Martín
dc.creatorSalinas Cruz, Luis
dc.creatorRojas Ponce, Karin
dc.creatorFigueroa Rodríguez, José Jorge
dc.creatorQuipas Bellizza, Mariella Margot
dc.date.accessioned2024-02-29T20:50:25Z
dc.date.accessioned2024-05-14T16:29:56Z
dc.date.available2024-02-29T20:50:25Z
dc.date.available2024-05-14T16:29:56Z
dc.date.created2024-02-29T20:50:25Z
dc.date.issued2024
dc.identifierhttp://hdl.handle.net/20.500.11955/1210
dc.identifierhttps://doi.org/10.3844/ojbsci.2024.195.207
dc.identifierOnline Journal of Biological Sciences
dc.identifierhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85182479071&doi=10.3844%2fojbsci.2024.195.207&origin=inward&txGid=fc0a374fb3eee26a0ed23da0e4cd1639
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9405563
dc.description.abstractThe deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and Fj collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters. © 2024, Science Publications. All rights reserved.
dc.languageen
dc.publisherScience Publications
dc.publisherAE
dc.relationurn:issn:16084217
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UNIFE
dc.subjectColinealidad
dc.titleComparison of collinearity indices for linear models in agricultural trials
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución