dc.creatorSyed Nor, Sharifah Heryati
dc.creatorIsmail, Shafinar
dc.creatorYap, Bee Wah
dc.date.accessioned2020-07-01T04:20:19Z
dc.date.accessioned2024-05-14T16:06:25Z
dc.date.available2020-07-01T04:20:19Z
dc.date.available2024-05-14T16:06:25Z
dc.date.created2020-07-01T04:20:19Z
dc.date.issued2019-06-01
dc.identifierSyed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157-170. https://doi.org/10.1108/JEFAS-08-2018-0076
dc.identifierhttps://hdl.handle.net/20.500.12640/1909
dc.identifierhttps://doi.org/10.1108/JEFAS-08-2018-0076
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9404202
dc.description.abstractPurpose – Personal bankruptcy is on the rise in Malaysia. The Insolvency Department of Malaysia reported that personal bankruptcy has increased since 2007 and the total accumulated personal bankruptcy cases stood at 131282 in 2014. This is indeed an alarming Issue because the increasing number of personal bankruptcy cases will have a negative impact on the Malaysian economy as well as on the society. From the aspect of individual’s personal economy bankruptcy minimizes their chances of securing a job. Apart from that their account will be frozen lost control on their assets and properties andnot allowed to start any business nor be a part of any company’s management. Bankrupts also will be denied from any loan application restricted from travelling overseas and cannot act as a guarantor. This paper aims to investigate this problem by developing the personal bankruptcy prediction model using thedecision tree technique. Design/methodology/approach – In this paper bankrupt is defined as terminated members who failed to settle their loans. The sample comprised of 24546 cases with 17 per cent settled cases and 83 percent terminated cases. The data included a dependent variable i.e. bankruptcy status (Y = 1(bankrupt)Y = 0 (non-bankrupt)) and 12 predictors. SAS Enterprise Miner 14.1 software was used to develop the decision tree model. Findings – Upon completion this study succeeds to come out with the profiles of bankrupts reliable personal bankruptcy scoring model and significant variables of personal bankruptcy. Practical implications – This decision tree model is possible for patent and income generation. Financial institutions are able to use this model for potential borrowers to predict their tendency toward personal bankruptcy. Originality/value – This decision tree model is able to facilitate and assist financial institutions in evaluating and assessing their potential borrower. It helps to identify potential defaulting borrowers. It also can assist financial institutions in implementing the right strategies to avoid defaulting borrowers.
dc.description.abstractLa quiebra personal está en aumento en Malasia. El Departamento de Insolvencia de Malasia informó que la bancarrota personal ha aumentado desde 2007 y el total acumulado de casos de bancarrota personal fue de 131282 en 2014. Este es un problema alarmante porque el Issueero creciente de casos de bancarrota personal tendrá un impacto negativo en la economía de Malasia. así como en la sociedad. Desde el aspecto de la economía personal del individuo la bancarrota minimiza sus posibilidades de obtener un empleo. Aparte de eso su cuenta se congelará perderá el control sobre sus activos y propiedades y no se le permitirá iniciar ningún negocio ni ser parte de la administración de ninguna compañía. Las bancarrotas también serán denegadas de cualquier solicitud de préstamo no podrán viajar al extranjero y no podrán actuar como garantes. Este artículo investiga este problema desarrollando el modelo de predicción de bancarrota personal utilizando la técnica del árbol de decisión. En este documento bancarrota se define como miembros cancelados que no pudieron liquidar sus préstamos. La muestra comprendió 24546 casos con 17% de casos resueltos y 83% casos terminados. Los datos incluyeron una variable dependiente es decir el estado de quiebra (Y = 1 (quiebra) Y = 0 (no quiebra)) y 12 predictores. Una vez finalizado este estudio logró presentar los perfiles de quiebras el modelo confiable de puntaje de bancarrota personal y las variables significativas de la bancarrota personal. Los hallazgos de este estudio son muy útiles y significativos para los bancos los acreedores el Departamento de Insolvencia de Malasia los prestatarios potenciales los miembros de la Agencia de Asesoría de Crédito y Gestión de Deudas y la sociedad en general sobre el conocimiento y el riesgo de quiebra personal. Esta información puede ayudar a hacer una predicción de bancarrota personal y tomar medidas preventivas o correctivas para reducir el Issueero de casos de bancarrota personal. Se espera que este estudio sea una piedra angular para un mayor desarrollo e improvisación especialmente a medida que haya más información y datos disponibles o accesibles.
dc.languageeng
dc.publisherUniversidad ESAN. ESAN Ediciones
dc.publisherPE
dc.relationurn:issn:2218-0648
dc.relationhttps://revistas.esan.edu.pe/index.php/jefas/article/view/88/71
dc.rightshttps://creativecommons.org/licenses/by/4.0
dc.rightsAttribution 4.0 International
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectData mining
dc.subjectCredit scoring
dc.subjectDecision tree model
dc.subjectPersonal bankruptcy
dc.subjectRandom undersampling
dc.subjectQuiebra personal
dc.subjectMinería de datos
dc.subjectÁrbol de decisiones
dc.subjectPuntuación de crédito
dc.subjectSubmuestreo aleatorio
dc.titlePersonal bankruptcy prediction using decision tree model
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución