dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorVilla-Velez, Harvey A.
dc.creatorVaquiro, Henry A.
dc.creatorTelis-Romero, Javier
dc.date2015-10-21T21:23:11Z
dc.date2016-10-25T21:14:38Z
dc.date2015-10-21T21:23:11Z
dc.date2016-10-25T21:14:38Z
dc.date2015-04-01
dc.date.accessioned2017-04-06T09:10:58Z
dc.date.available2017-04-06T09:10:58Z
dc.identifierIndustrial Crops And Products, v. 66, p. 52-61, 2015.
dc.identifier0926-6690
dc.identifierhttp://hdl.handle.net/11449/129569
dc.identifierhttp://acervodigital.unesp.br/handle/11449/129569
dc.identifierhttp://dx.doi.org/10.1016/j.indcrop.2014.12.022
dc.identifierWOS:000350932900007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/940124
dc.descriptionVarious pretreatment techniques can change the physical and chemical structure of lignocellulosic biomass and improve the hydrolysis rates. High-intensity ultrasound could be a promising technique in the biomass pretreatment process. The objective of this work was to study the effect of biomass concentration, pH, ultrasonic power level and sonication time on the production yield in total sugars (S-T) and reducing sugars (S-R) during the pretreatment of banana flower-stalk biomass. A qualitative evaluation was carried out by scanning electron microscopy, showing a disruptive effect on the biomass structure at high ultrasonic power levels and low biomass concentrations. An experimental design with three-levels for the four-variables was used in order to set the conditions for the pretreatments. Stepwise regression (SRG) and an artificial neural network (ANN) were applied in order to establish mathematical models that could represent and be used to study the dependence of the factors on both the S-T and S-R yields. The statistical results indicated that the ANN approach provided a more accurate estimation than SRG. (C) 2014 Elsevier B.V. All rights reserved.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherElsevier B.V.
dc.relationIndustrial Crops And Products
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial neural network
dc.subjectFermentable sugars
dc.subjectLignocellulosic materials
dc.subjectOptimization
dc.subjectStepwise regression
dc.titleThe effect of power-ultrasound on the pretreatment of acidified aqueous solutions of banana flower-stalk: Structural, chemical and statistical analysis
dc.typeOtro


Este ítem pertenece a la siguiente institución