dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLlibre, Jaume
dc.creatorMessias, Marcelo
dc.creatorReinol, Alisson de Carvalho
dc.date2015-10-21T20:52:39Z
dc.date2016-10-25T21:08:56Z
dc.date2015-10-21T20:52:39Z
dc.date2016-10-25T21:08:56Z
dc.date2015-01-01
dc.date.accessioned2017-04-06T09:09:01Z
dc.date.available2017-04-06T09:09:01Z
dc.identifierInternational Journal Of Bifurcation And Chaos, v. 25, n. 1, p. 16, 2015.
dc.identifier0218-1274
dc.identifierhttp://hdl.handle.net/11449/129339
dc.identifierhttp://acervodigital.unesp.br/handle/11449/129339
dc.identifierhttp://dx.doi.org/10.1142/S0218127415500157
dc.identifierWOS:000349227400017
dc.identifierhttp://www.worldscientific.com/doi/abs/10.1142/S0218127415500157
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/939894
dc.descriptionWe give the normal forms of all polynomial differential systems in R-3 which have a nondegenerate or degenerate quadric as an invariant algebraic surface. We also characterize among these systems those which have a Darboux invariant constructed uniquely using the invariant quadric, giving explicitly their expressions. As an example, we apply the obtained results in the determination of the Darboux invariants for the Chen system with an invariant quadric.
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationInternational Journal Of Bifurcation And Chaos
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPolynomial differential systems
dc.subjectinvariant quadric
dc.subjectDarboux integrability
dc.subjectDarboux invariant
dc.titleNormal Forms for Polynomial Differential Systems in R-3 Having an Invariant Quadric and a Darboux Invariant
dc.typeOtro


Este ítem pertenece a la siguiente institución