| dc.contributor | Universidade Estadual Paulista (UNESP) | |
| dc.creator | Area, Ivan | |
| dc.creator | Dimitrov, Dimitar K. | |
| dc.creator | Godoy, Eduardo | |
| dc.creator | Paschoa, Vanessa | |
| dc.date | 2015-10-21T13:14:44Z | |
| dc.date | 2016-10-25T21:06:21Z | |
| dc.date | 2015-10-21T13:14:44Z | |
| dc.date | 2016-10-25T21:06:21Z | |
| dc.date | 2015-07-01 | |
| dc.date.accessioned | 2017-04-06T09:01:56Z | |
| dc.date.available | 2017-04-06T09:01:56Z | |
| dc.identifier | Numerical Algorithms, v. 69, n. 3, p. 611-624, 2015. | |
| dc.identifier | 1017-1398 | |
| dc.identifier | http://hdl.handle.net/11449/128868 | |
| dc.identifier | http://acervodigital.unesp.br/handle/11449/128868 | |
| dc.identifier | http://dx.doi.org/10.1007/s11075-014-9916-y | |
| dc.identifier | WOS:000356823700010 | |
| dc.identifier | http://link.springer.com/article/10.1007%2Fs11075-014-9916-y | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/939424 | |
| dc.description | Sharp bounds for the zeros of symmetric Kravchuk polynomials K (n) (x;M) are obtained. The results provide a precise quantitative meaning of the fact that Kravchuk polynomials converge uniformly to Hermite polynomials, as M tends to infinity. They show also how close the corresponding zeros of two polynomials from these sequences of classical orthogonal polynomials are. | |
| dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.language | eng | |
| dc.publisher | Springer | |
| dc.relation | Numerical Algorithms | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Orthogonal polynomials of a discrete variable | |
| dc.subject | Symmetric Kravchuk polynomials | |
| dc.subject | Hermite polynomials | |
| dc.subject | Limit relation | |
| dc.subject | Zeros | |
| dc.title | Bounds for the zeros of symmetric kravchuk polynomials | |
| dc.type | Otro | |