dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Bastos, J. | |
dc.creator | Messaoudi, A. | |
dc.creator | Rodrigues, T. | |
dc.creator | Smania, D. | |
dc.date | 2015-10-21T13:14:40Z | |
dc.date | 2016-10-25T21:00:38Z | |
dc.date | 2015-10-21T13:14:40Z | |
dc.date | 2016-10-25T21:00:38Z | |
dc.date | 2015-07-11 | |
dc.date.accessioned | 2017-04-06T09:01:54Z | |
dc.date.available | 2017-04-06T09:01:54Z | |
dc.identifier | Theoretical Computer Science. Amsterdam: Elsevier Science Bv, v. 588, p. 114-130, 2015. | |
dc.identifier | 0304-3975 | |
dc.identifier | http://hdl.handle.net/11449/128863 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/128863 | |
dc.identifier | http://dx.doi.org/10.1016/j.tcs.2015.04.007 | |
dc.identifier | WOS:000357222400010 | |
dc.identifier | http://www.sciencedirect.com/science/article/pii/S030439751500314X | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/939419 | |
dc.description | In this paper, we study arithmetical and topological properties for a class of Rauzy fractals R-a given by the polynomial x(3) - ax(2) + x - 1 where a >= 2 is an integer. In particular, we prove the number of neighbors of R-a in the periodic tiling is equal to 8. We also give explicitly an automaton that generates the boundary of R-a. As a consequence, we prove that R-2 is homeomorphic to a topological disk. | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.language | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation | Theoretical Computer Science | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Rauzy fractals | |
dc.subject | Numeration system | |
dc.subject | Automaton | |
dc.subject | Topological properties | |
dc.title | A class of cubic Rauzy fractals | |
dc.type | Otro | |