dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBastos, J.
dc.creatorMessaoudi, A.
dc.creatorRodrigues, T.
dc.creatorSmania, D.
dc.date2015-10-21T13:14:40Z
dc.date2016-10-25T21:00:38Z
dc.date2015-10-21T13:14:40Z
dc.date2016-10-25T21:00:38Z
dc.date2015-07-11
dc.date.accessioned2017-04-06T09:01:54Z
dc.date.available2017-04-06T09:01:54Z
dc.identifierTheoretical Computer Science. Amsterdam: Elsevier Science Bv, v. 588, p. 114-130, 2015.
dc.identifier0304-3975
dc.identifierhttp://hdl.handle.net/11449/128863
dc.identifierhttp://acervodigital.unesp.br/handle/11449/128863
dc.identifierhttp://dx.doi.org/10.1016/j.tcs.2015.04.007
dc.identifierWOS:000357222400010
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S030439751500314X
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/939419
dc.descriptionIn this paper, we study arithmetical and topological properties for a class of Rauzy fractals R-a given by the polynomial x(3) - ax(2) + x - 1 where a >= 2 is an integer. In particular, we prove the number of neighbors of R-a in the periodic tiling is equal to 8. We also give explicitly an automaton that generates the boundary of R-a. As a consequence, we prove that R-2 is homeomorphic to a topological disk.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherElsevier B.V.
dc.relationTheoretical Computer Science
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRauzy fractals
dc.subjectNumeration system
dc.subjectAutomaton
dc.subjectTopological properties
dc.titleA class of cubic Rauzy fractals
dc.typeOtro


Este ítem pertenece a la siguiente institución