dc.creatorMonge, J.C
dc.creatorMantari, J.L
dc.date.accessioned2023-12-20T19:54:18Z
dc.date.accessioned2024-05-09T18:59:26Z
dc.date.available2023-12-20T19:54:18Z
dc.date.available2024-05-09T18:59:26Z
dc.date.created2023-12-20T19:54:18Z
dc.date.issued2023
dc.identifierhttps://hdl.handle.net/20.500.13054/758
dc.identifier10.1080/15376494.2022.2064570
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9389986
dc.description.abstractThe present mathematical model for complex shells is given in the framework of Carrera unified formulation. The mechanical, electrical, and magnetic equations are derived in terms of the principle of virtual displacement, Maxwell’s equations and Gauss equations. Fourier’s heat conduction equation is used. The governing equations are discretized by the Chebyshev–Gauss–Lobatto and solved with the differential quadrature method. The three-dimensional (3D) equilibrium for mechanical, electrical, and magnetic equations are employed for recovering the transverse stresses, electrical displacement and magnetic induction. Finally, quasi-3D solutions for cycloidal shell of revolution and a funnel panel are introduced in this paper.
dc.languageeng
dc.publisherTaylor and Francis Ltd.
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.sourceRepositorio Institucional del Instituto Peruano de Energía Nuclear
dc.sourceInstituto Peruano de Energía Nuclear
dc.subjectCarrera’s unified formulation
dc.subjectdifferential quadrature
dc.subjectfunctionally graded material
dc.subjectheat conduction
dc.subjectMagneto-electro–elastic material
dc.subjectshell
dc.titleThermal bending response of functionally graded magneto-electric–elastic shell employing non-polynomial model
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución