dc.creatorSaravia Navarro, David
dc.creatorSalazar Coronel, Wilian
dc.creatorValqui Valqui, Lamberto
dc.creatorQuille Mamani, Javier Alvaro
dc.creatorPorras Jorge, Zenaida Rossana
dc.creatorCorredor Arizapana, Flor Anita
dc.creatorBarboza Castillo, Elgar
dc.creatorVásquez Pérez, Héctor Vladimir
dc.creatorCasas Diaz, Andrés V.
dc.creatorArbizu Berrocal, Carlos Irvin
dc.date.accessioned2023-06-05T17:55:30Z
dc.date.accessioned2024-05-09T18:54:27Z
dc.date.available2023-06-05T17:55:30Z
dc.date.available2024-05-09T18:54:27Z
dc.date.created2023-06-05T17:55:30Z
dc.date.issued2022-10-26
dc.identifierSaravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630
dc.identifier2073-4395
dc.identifierhttps://hdl.handle.net/20.500.12955/2200
dc.identifierhttps://doi.org/10.3390/agronomy12112630
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9389898
dc.description.abstractEarly assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.
dc.languageeng
dc.publisherMDPI
dc.publisherCH
dc.relationurn:issn:2073-4395
dc.relationAgronomy
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceInstituto Nacional de Innovación Agraria
dc.sourceRepositorio Institucional - INIA
dc.subjectVegetation indices
dc.subjectPrecision farming
dc.subjectHybrid
dc.subjectPhenotyping
dc.subjectRemote sensing
dc.titleYield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución