dc.contributorGutiérrez Cárdenas, Juan Manuel
dc.contributorEscobedo Neyra, María Cielo (Ingeniería de Sistemas)
dc.contributorTapia Aquino, Cynthia, Lizet (Ingeniería de Sistemas)
dc.creatorEscobedo Neyra, María Cielo
dc.creatorTapia Aquino, Cynthia, Lizet
dc.creatorGutiérrez Cárdenas, Juan Manuel
dc.creatorAyma, Víctor
dc.date.accessioned2024-04-19T13:54:31Z
dc.date.accessioned2024-05-08T13:30:03Z
dc.date.available2024-04-19T13:54:31Z
dc.date.available2024-05-08T13:30:03Z
dc.date.created2024-04-19T13:54:31Z
dc.date.issued2024
dc.identifierEscobedo, M., Tapia, C., Gutierrez, J., & Ayma, V. (2024). Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2024.0150307.
dc.identifier2156-5570
dc.identifierhttps://hdl.handle.net/20.500.12724/20201
dc.identifierInternational Journal of Advanced Computer Science and Applications
dc.identifierhttps://doi.org/10.14569/IJACSA.2024.0150307
dc.identifier2-s2.0-85189935904
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9356055
dc.description.abstractCrime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and AdaBoost. Through GridsearchCV we optimized hyperparameters to enhance our research findings. The results showed that Extra Tree Regression stood out as the model with an R2 value of 0.79. Additionally, error metrics like MSE (185.43) RMSE (13.62) and MAE (10.47) were considered to evaluate the model's performance. Our approach considers time patterns in crime incidents. Contributes, to addressing the issue of insecurity in a meaningful way. © (2024), (Science and Information Organization). All Rights Reserved.
dc.languageeng
dc.publisherScience and Information Organization
dc.publisherGB
dc.relationurn:issn:2156-5570
dc.rightsopen access
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectpendiente
dc.titleComparing Regression Models to Predict Property Crime in High-Risk Lima Districts
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución