dc.contributorCabanillas Zannini, Victor Rafael
dc.creatorCabanillas Zannini, Victor Rafael
dc.creatorQuispe Méndez, T.
dc.creatorRamos, A. J. A.
dc.date.accessioned2024-04-02T16:55:55Z
dc.date.accessioned2024-05-08T13:03:32Z
dc.date.available2024-04-02T16:55:55Z
dc.date.available2024-05-08T13:03:32Z
dc.date.created2024-04-02T16:55:55Z
dc.date.issued2024
dc.identifierCabanillas Zannini, V., Quispe Méndez, T., & Ramos, A.J.A. (2024). Optimal stability for laminated beams with Kelvin-Voigt damping and Fourier's law. Asymptotic Analysis. https://doi.org/10.3233/ASY-231883
dc.identifier0921-7134
dc.identifierhttps://hdl.handle.net/20.500.12724/20098
dc.identifierAsymptotic Analysis
dc.identifierhttps://doi.org/10.3233/ASY-231883
dc.identifier2-s2.0-85187548977
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9355480
dc.description.abstractThis article deals with the asymptotic behavior of a mathematical model for laminated beams with Kelvin-Voigt dissipation acting on the equations of transverse displacement and dimensionless slip. We prove that the evolution semigroup is exponentially stable if the damping is effective in the two equations of the model. Otherwise, we prove that the semigroup is polynomially stable and find the optimal decay rate when damping is effective only in the slip equation. Our stability approach is based on the Gearhart-Prüss-Huang Theorem, which characterizes exponential stability, while the polynomial decay rate is obtained using the Borichev and Tomilov Theorem.
dc.languageeng
dc.publisherIOS Press BV
dc.publisherNL
dc.relationurn:issn:0921-7134
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.titleOptimal stability for laminated beams with Kelvin-Voigt damping and Fourier's law
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución