dc.contributorDel Savio, Alexandre Almeida
dc.contributorCárdenas Salas, Daniel Enrique
dc.contributorLuna Torres, Ana Felícita
dc.contributorVergara Olivera, Mónica Alejandra
dc.creatorDel Savio, Alexandre Almeida
dc.creatorCárdenas Salas, Daniel Enrique
dc.creatorLuna Torres, Ana Felícita
dc.creatorVergara Olivera, Mónica Alejandra
dc.creatorUrday Ibarra, Gianella Tania
dc.date.accessioned2023-10-09T17:16:57Z
dc.date.accessioned2024-05-08T13:02:50Z
dc.date.available2023-10-09T17:16:57Z
dc.date.available2024-05-08T13:02:50Z
dc.date.created2023-10-09T17:16:57Z
dc.date.issued2023
dc.identifierDel Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app13179662
dc.identifier2076-3417
dc.identifierhttps://hdl.handle.net/20.500.12724/19064
dc.identifierApplied Sciences
dc.identifierhttps://doi.org/10.3390/app13179662
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9355428
dc.description.abstractThe introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks. © 2023 by the authors.
dc.languageeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.publisherCH
dc.relationurn:issn: 2076-3417
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.titleDetection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución