dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBarbaresco, Evelin Meneguesso
dc.creatorDesideri, Patrícia Elaine
dc.creatorPergher, Pedro Luiz Queiroz
dc.date2015-04-27T11:55:58Z
dc.date2016-10-25T20:46:52Z
dc.date2015-04-27T11:55:58Z
dc.date2016-10-25T20:46:52Z
dc.date2012
dc.date.accessioned2017-04-06T08:09:31Z
dc.date.available2017-04-06T08:09:31Z
dc.identifierMathematica Scandinavica, v. 110, n. 2, p. 223-234, 2012.
dc.identifier1903-1807
dc.identifierhttp://hdl.handle.net/11449/122703
dc.identifierhttp://acervodigital.unesp.br/handle/11449/122703
dc.identifier6556211699447687
dc.identifierhttp://www.mscand.dk/article/view/15205
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/933324
dc.descriptionLet T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.
dc.languageeng
dc.relationMathematica Scandinavica
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectInvolução; Fixed data; classe de Stiefel-Whitney;
dc.titleInvolutions whose fixed set has three or four components: a small codimension phenomenon
dc.typeOtro


Este ítem pertenece a la siguiente institución