dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorAndrade, Antonio Aparecido de
dc.creatorShah, Tariq
dc.date2015-04-27T11:55:57Z
dc.date2016-10-25T20:46:51Z
dc.date2015-04-27T11:55:57Z
dc.date2016-10-25T20:46:51Z
dc.date2012
dc.date.accessioned2017-04-06T08:09:23Z
dc.date.available2017-04-06T08:09:23Z
dc.identifierJournal of Advanced Research in Applied Mathematics, v. 4, n. 4, p. 66-77, 2012.
dc.identifier1942-9649
dc.identifierhttp://hdl.handle.net/11449/122688
dc.identifierhttp://acervodigital.unesp.br/handle/11449/122688
dc.identifierhttp://dx.doi.org/10.5373/jaram.1362.031912
dc.identifier8940498347481982
dc.identifierhttp://www.i-asr.com/Journals/jaram/ArticleDetail.aspx?PaperID=1362
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/933309
dc.descriptionFor a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
dc.languageeng
dc.relationJournal of Advanced Research in Applied Mathematics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCyclic code
dc.subjectBCH code
dc.subjectAlternant code
dc.subjectGoppa code
dc.subjectSrivastava code
dc.titleLinear codes over finite local rings in a chain
dc.typeOtro


Este ítem pertenece a la siguiente institución