| dc.contributor | Universidade Estadual Paulista (UNESP) | |
| dc.creator | Andrade, Antonio Aparecido de | |
| dc.creator | Shah, Tariq | |
| dc.date | 2015-04-27T11:55:57Z | |
| dc.date | 2016-10-25T20:46:51Z | |
| dc.date | 2015-04-27T11:55:57Z | |
| dc.date | 2016-10-25T20:46:51Z | |
| dc.date | 2012 | |
| dc.date.accessioned | 2017-04-06T08:09:23Z | |
| dc.date.available | 2017-04-06T08:09:23Z | |
| dc.identifier | Journal of Advanced Research in Applied Mathematics, v. 4, n. 4, p. 66-77, 2012. | |
| dc.identifier | 1942-9649 | |
| dc.identifier | http://hdl.handle.net/11449/122688 | |
| dc.identifier | http://acervodigital.unesp.br/handle/11449/122688 | |
| dc.identifier | http://dx.doi.org/10.5373/jaram.1362.031912 | |
| dc.identifier | 8940498347481982 | |
| dc.identifier | http://www.i-asr.com/Journals/jaram/ArticleDetail.aspx?PaperID=1362 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/933309 | |
| dc.description | For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives. | |
| dc.language | eng | |
| dc.relation | Journal of Advanced Research in Applied Mathematics | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Cyclic code | |
| dc.subject | BCH code | |
| dc.subject | Alternant code | |
| dc.subject | Goppa code | |
| dc.subject | Srivastava code | |
| dc.title | Linear codes over finite local rings in a chain | |
| dc.type | Otro | |