dc.creatorVives, Luis
dc.creatorBasha, N. Khadar
dc.creatorPoonam
dc.creatorGehlot, Anita
dc.creatorChole, Vikrant
dc.creatorPant, Kumud
dc.date.accessioned2022-09-08T14:05:23Z
dc.date.accessioned2024-05-07T03:13:43Z
dc.date.available2022-09-08T14:05:23Z
dc.date.available2024-05-07T03:13:43Z
dc.date.created2022-09-08T14:05:23Z
dc.date.issued2022-01-01
dc.identifier10.1109/ICACITE53722.2022.9823933
dc.identifierhttp://hdl.handle.net/10757/660901
dc.identifier2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022
dc.identifier2-s2.0-85135472454
dc.identifierSCOPUS_ID:85135472454
dc.identifier0000 0001 2196 144X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9329822
dc.description.abstractso, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. Numerous researchers recently developed numerous computer-aided diagnostic algorithms employing various supervised learning approaches. Early identification of sickness may help to reduce the number of people who die as a result of these illnesses. Using machine learning techniques, this research creates an efficient automated illness diagnostic algorithm. We chose three key disorders in this paper: coronavirus, cardiovascular diseases, and diabetes. The data are inputted into a mobile application in the suggested model, the investigation is then done in a real-time dataset that used a pre-trained model machine learning technique trained within the same dataset then implemented in firebase, and lastly, the illness identification result can be seen in the mobile application. Logistic regression is a method of prediction calculation
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://ieeexplore.ieee.org/document/9823933
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceRepositorio Academico - UPC
dc.sourceUniversidad Peruana de Ciencias Aplicadas (UPC)
dc.source2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022
dc.source2458
dc.source2462
dc.subjectAlgorithm
dc.subjectautomatic assistance
dc.subjectclassification
dc.subjectclustering
dc.subjectData Acquisition
dc.subjectData Management
dc.subjectData processing
dc.subjectData protection
dc.subjectdata wrangling
dc.subjectDeep learning
dc.subjectHealthcare
dc.subjectimputation
dc.subjectInternet of things
dc.subjectInterpretation
dc.subjectprobabilities
dc.subjectregression
dc.subjectSecurity
dc.subjectstatistics
dc.subjectsupervised learning
dc.titleDevelop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución