dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorAndrade, Antonio Aparecido de
dc.creatorShah, Tariq
dc.creatorKhan, Mubashar
dc.date2015-04-27T11:55:36Z
dc.date2016-10-25T20:46:04Z
dc.date2015-04-27T11:55:36Z
dc.date2016-10-25T20:46:04Z
dc.date2014
dc.date.accessioned2017-04-06T08:06:00Z
dc.date.available2017-04-06T08:06:00Z
dc.identifierInternational Journal of Algebra, v. 8, n. 11, p. 547-556, 2014.
dc.identifier1312-8868
dc.identifierhttp://hdl.handle.net/11449/122329
dc.identifierhttp://acervodigital.unesp.br/handle/11449/122329
dc.identifierhttp://dx.doi.org/10.12988/ija.2014.4657
dc.identifierISSN1312-8868-2014-08-11-547-556.pdf
dc.identifier8940498347481982
dc.identifierhttp://www.m-hikari.com/ija/ija-2014/ija-9-12-2014/index.html
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/932953
dc.descriptionThis study establishes that for a given binary BCH code C0 n of length n generated by a polynomial g(x) ∈ F2[x] of degree r there exists a family of binary cyclic codes {Cm 2m−1(n+1)n}m≥1 such that for each m ≥ 1, the binary cyclic code Cm 2m−1(n+1)n has length 2m−1(n + 1)n and is generated by a generalized polynomial g(x 1 2m ) ∈ F2[x, 1 2m Z≥0] of degree 2mr. Furthermore, C0 n is embedded in Cm 2m−1(n+1)n and Cm 2m−1(n+1)n is embedded in Cm+1 2m(n+1)n for each m ≥ 1. By a newly proposed algorithm, codewords of the binary BCH code C0 n can be transmitted with high code rate and decoded by the decoder of any member of the family {Cm 2m−1(n+1)n}m≥1 of binary cyclic codes, having the same code rate.
dc.languageeng
dc.relationInternational Journal of Algebra
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCyclic code
dc.subjectBCH code
dc.subjectdecoding procedure
dc.titleA BCH code and a sequence of cyclic codes
dc.typeOtro


Este ítem pertenece a la siguiente institución