Perú | info:eu-repo/semantics/article
dc.creatorChávez, Luisa
dc.creatorCortez, Angel
dc.creatorVinces, Leonardo
dc.date.accessioned2022-08-08T01:59:59Z
dc.date.accessioned2024-05-07T03:08:57Z
dc.date.available2022-08-08T01:59:59Z
dc.date.available2024-05-07T03:08:57Z
dc.date.created2022-08-08T01:59:59Z
dc.date.issued2022-01-01
dc.identifier21903018
dc.identifier10.1007/978-3-031-08545-1_43
dc.identifierhttp://hdl.handle.net/10757/660562
dc.identifier21903026
dc.identifierSmart Innovation, Systems and Technologies
dc.identifier2-s2.0-85135008074
dc.identifierSCOPUS_ID:85135008074
dc.identifier0000 0001 2196 144X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9329484
dc.description.abstractThis article focuses on the development of an autonomous navigation system by generating real-time 3D maps of different urban environments with different properties within simulation software. This system used the Pioneer 3-DX vehicle, a LiDAR sensor, GPS, and a gyroscope. For the elaboration of the trajectory, the mathematical tool of artificial potential fields was used, which will generate an attractive field to a dynamic goal identified by the robot and repulsive to the obstacles present in the environment, recognized with great precision thanks to the use of a neural network. The topology neural network 8–16–32 was developed using forward propagation, reverse propagation, and gradient descent algorithms. By combining the tools of potential fields and neural networks, a path was traced through which the robotic system will be able to move freely under an off-center point kinematic control algorithm. Finally, a 3D map of the environment was obtained to provide information on the morphology and most outstanding characteristics of the deployment environment to users who use the system.
dc.languageeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relationhttps://link.springer.com/chapter/10.1007/978-3-031-08545-1_43
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceUniversidad Peruana de Ciencias Aplicadas (UPC)
dc.sourceRepositorio Academico - UPC
dc.sourceSmart Innovation, Systems and Technologies
dc.source295 SIST
dc.source452
dc.source460
dc.subject3D map
dc.subjectArtificial potential fields
dc.subjectAutonomous navigation
dc.subjectAutonomous system
dc.subjectLiDAR
dc.subjectNeural networks
dc.subjectUGV
dc.titleA Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución